Cryogenic trapped-ion system for large scale quantum simulation

We present a cryogenic ion trapping system designed for large scale quantum simulation of spin models. Our apparatus is based on a segmented-blade ion trap enclosed in a 4 K cryostat, which enables us to routinely trap over 100 $^{171}$Yb$^+$ ions in a linear configuration for hours due to a low background gas pressure from differential cryo-pumping. We characterize the cryogenic vacuum by using trapped ion crystals as a pressure gauge, measuring both inelastic and elastic collision rates with the molecular background gas. We demonstrate nearly equidistant ion spacing for chains of up to 44 ions using anharmonic axial potentials. This reliable production and lifetime enhancement of large linear ion chains will enable quantum simulation of spin models that are intractable with classical computer modelling.

[1]  W. W. Macalpine,et al.  Coaxial Resonators with Helical Inner Conductor , 1959, Proceedings of the IRE.

[2]  Blatt,et al.  Population trapping in excited Yb ions. , 1989, Physical review letters.

[3]  David J. Wineland,et al.  Cryogenic linear ion trap for accurate spectroscopy , 1996 .

[4]  S. Kleineidam,et al.  Higher order non-linear resonances in a Paul trap , 1996 .

[5]  K. Sugiyama,et al.  Production of YbH + by chemical reaction of Yb + in excited states with H 2 gas , 1997 .

[6]  A. Khabbaz,et al.  Precision Mass Spectroscopy of the Antiproton and Proton Using Simultaneously Trapped Particles , 1999 .

[7]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[8]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[9]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.

[10]  Simulations of the rf heating rates in a linear quadrupole ion trap , 2005 .

[11]  G. Werth,et al.  Instabilities of ion motion in a linear Paul trap , 2006 .

[12]  S. Olmschenk,et al.  Ion trap in a semiconductor chip , 2006 .

[13]  Shi-Liang Zhu,et al.  Trapped ion quantum computation with transverse phonon modes. , 2006, Physical review letters.

[14]  J. Ekin,et al.  Experimental techniques for low-temperature measurements , 2006 .

[15]  S. Olmschenk,et al.  Manipulation and detection of a trapped Yb+ hyperfine qubit , 2007, 0708.0657.

[16]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[17]  S. Fishman,et al.  Structural phase transitions in low-dimensional ion crystals , 2007, 0710.1831.

[18]  M. Chang,et al.  Entanglement and tunable spin-spin couplings between trapped ions using multiple transverse modes. , 2009, Physical review letters.

[19]  C. Monroe,et al.  Large-scale quantum computation in an anharmonic linear ion trap , 2009, 0901.0579.

[20]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[21]  R. Blatt,et al.  Quantum simulation of the Dirac equation , 2009, Nature.

[22]  L. Ratschbacher,et al.  Kinetics of a single trapped ion in an ultracold buffer gas , 2010, 1012.0304.

[23]  W. Hensinger,et al.  On the application of radio frequency voltages to ion traps via helical resonators , 2011, 1106.5013.

[24]  V. Vuletić,et al.  Micromotion-induced limit to atom-ion sympathetic cooling in Paul traps. , 2012, Physical review letters.

[25]  Jeremy M. Sage,et al.  Loading of a surface-electrode ion trap from a remote, precooled source , 2012, 1205.6379.

[26]  J. Ullrich,et al.  Cryogenic linear Paul trap for cold highly charged ion experiments. , 2012, The Review of scientific instruments.

[27]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[28]  M. Poelker,et al.  The effect of heat treatments and coatings on the outgassing rate of stainless steel chambers , 2013, 1307.4338.

[29]  P. Julienne,et al.  Quantum theory of reactive collisions for 1/r(n) potentials. , 2013, Physical review letters.

[30]  Scott T. Sullivan,et al.  Neutral gas sympathetic cooling of an ion in a Paul trap. , 2013, Physical review letters.

[31]  I. V. Inlek,et al.  Quantum gates with phase stability over space and time , 2014 .

[32]  Michael Niedermayr,et al.  Cryogenic silicon surface ion trap , 2014, 1403.5208.

[33]  Andrew J. Daley,et al.  Quantum trajectories and open many-body quantum systems , 2014, 1405.6694.

[34]  Michael Niedermayr,et al.  Cryogenic surface ion trap based on intrinsic silicon , 2014 .

[35]  I. V. Inlek,et al.  Entanglement of Distinguishable Quantum Memories , 2014, 1409.0907.

[36]  J. Chiaverini,et al.  Measurement of ion motional heating rates over a range of trap frequencies and temperatures , 2014, 1412.5119.

[37]  Atsushi Noguchi,et al.  Hong–Ou–Mandel interference of two phonons in trapped ions , 2015, Nature.

[38]  R. Blatt,et al.  Ion-trap measurements of electric-field noise near surfaces , 2014, 1409.6572.

[39]  F. Leupold,et al.  Fast quantum control and light-matter interactions at the 10,000 quanta level , 2015, 1509.06157.

[40]  M. L. Wall,et al.  Quantum spin dynamics and entanglement generation with hundreds of trapped ions , 2015, Science.

[41]  M. Johanning,et al.  Isospaced linear ion strings , 2016, Applied Physics B.

[42]  J. D. Wong-Campos,et al.  Active stabilization of ion trap radiofrequency potentials. , 2016, The Review of scientific instruments.

[43]  T. Monz,et al.  Cryogenic setup for trapped ion quantum computing. , 2016, The Review of scientific instruments.

[44]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[45]  Lu-Ming Duan,et al.  Sympathetic cooling in a large ion crystal , 2015, Quantum Inf. Process..

[46]  Paul W. Hess,et al.  Engineering large Stark shifts for control of individual clock state qubits , 2016, 1604.08840.

[47]  P. W. Hess,et al.  Observation of a discrete time crystal , 2016, Nature.

[48]  James D. Siverns,et al.  Ion trap architectures and new directions , 2017, Quantum Inf. Process..

[49]  B. Lanyon,et al.  Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System. , 2016, Physical review letters.

[50]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[51]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.