PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M*/M⊙) = 9.0–11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10−1.3 to 102.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time tdepl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z)−0.6 × (δMS)−0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μgas depends on ( 1 + z ) 2.5 × ( δ MS ) 0.52 × ( M * ) − 0.36 , which tracks the evolution of the specific SFR. The redshift dependence of μgas requires a curvature term, as may the mass dependences of tdepl and μgas. We find no or only weak correlations of tdepl and μgas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z.

[1]  D. Schiminovich,et al.  xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies , 2017, 1710.02157.

[2]  O. Ilbert,et al.  Evolution of Interstellar Medium, Star Formation, and Accretion at High Redshift , 2017, 1702.04729.

[3]  R. Davé,et al.  Deriving a multivariate αCO conversion function using the [C ii]/CO (1−0) ratio and its application to molecular gas scaling relations , 2017, 1702.03888.

[4]  Berkeley,et al.  PHIBSS: exploring the dependence of the CO–H2 conversion factor on total mass surface density at z<1.5 , 2016, 1611.04587.

[5]  B. Groves,et al.  GAS FRACTION AND DEPLETION TIME OF MASSIVE STAR-FORMING GALAXIES AT z ∼ 3.2: NO CHANGE IN GLOBAL STAR FORMATION PROCESS OUT TO z > 3 , 2016, 1610.03656.

[6]  S. Wuyts,et al.  BULGE-FORMING GALAXIES WITH AN EXTENDED ROTATING DISK AT z ∼ 2 , 2016, 1608.05412.

[7]  H. Rix,et al.  THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: MOLECULAR GAS RESERVOIRS IN HIGH-REDSHIFT GALAXIES , 2016, 1607.06771.

[8]  R. Giovanelli,et al.  Molecular and atomic gas along and across the main sequence of star-forming galaxies , 2016, 1607.05289.

[9]  J. Trump,et al.  SUB-KILOPARSEC ALMA IMAGING OF COMPACT STAR-FORMING GALAXIES AT z ∼ 2.5: REVEALING THE FORMATION OF DENSE GALACTIC CORES IN THE PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2016, 1607.01011.

[10]  C. Ree,et al.  RECENT GALAXY MERGERS AND RESIDUAL STAR FORMATION OF RED SEQUENCE GALAXIES IN GALAXY CLUSTERS , 2016, 1606.02362.

[11]  V. A. Bruce,et al.  A deep ALMA image of the Hubble Ultra Deep Field , 2016, 1606.00227.

[12]  R. Genzel,et al.  KMOS3D: DYNAMICAL CONSTRAINTS ON THE MASS BUDGET IN EARLY STAR-FORMING DISKS , 2016, 1603.03432.

[13]  A. Sternberg,et al.  Stellar and gaseous disc structures in cosmological galaxy equilibrium models , 2015, 1510.01238.

[14]  C. Carollo,et al.  The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment , 2015, 1509.02529.

[15]  O. Ilbert,et al.  ISM MASSES AND THE STAR FORMATION LAW AT Z = 1 TO 6: ALMA OBSERVATIONS OF DUST CONTINUUM IN 145 GALAXIES IN THE COSMOS SURVEY FIELD , 2015, 1511.05149.

[16]  R. Genzel,et al.  Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA , 2015, 1511.05147.

[17]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[18]  F. S. Guzmán,et al.  ACCRETION OF SUPERSONIC WINDS ONTO BLACK HOLES IN 3D: STABILITY OF THE SHOCK CONE , 2015, 1510.05947.

[19]  B. Weiner,et al.  The inferred evolution of the cold gas properties of CANDELS galaxies at 0.5 < z < 3.0 , 2015, 1509.04720.

[20]  J. Dunlop,et al.  SXDF-ALMA 1.5 arcmin2 DEEP SURVEY: A COMPACT DUSTY STAR-FORMING GALAXY AT z = 2.5 , 2015, 1508.05950.

[21]  S. Warren,et al.  HIGH-RESOLUTION IMAGING OF PHIBSS z ∼ 2 MAIN-SEQUENCE GALAXIES IN CO J = 1 → 0 , 2015, 1507.05652.

[22]  C. Kramer,et al.  VARIATIONS IN THE STAR FORMATION EFFICIENCY OF THE DENSE MOLECULAR GAS ACROSS THE DISKS OF STAR-FORMING GALAXIES , 2015, 1506.00703.

[23]  J. Silverman,et al.  A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE , 2015, 1505.04977.

[24]  C. Frenk,et al.  Molecular hydrogen abundances of galaxies in the EAGLE simulations , 2015, 1503.04807.

[25]  R. D. Strauss,et al.  ON ASPECTS PERTAINING TO THE PERPENDICULAR DIFFUSION OF SOLAR ENERGETIC PARTICLES , 2015, 1804.03689.

[26]  A. Renzini,et al.  AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES , 2015, 1502.01027.

[27]  J. Michael Shull,et al.  THE METAGALACTIC IONIZING BACKGROUND: A CRISIS IN UV PHOTON PRODUCTION OR INCORRECT GALAXY ESCAPE FRACTIONS? , 2015, 1502.00637.

[28]  G. Kauffmann,et al.  The variation in molecular gas depletion time among nearby galaxies - II. The impact of galaxy internal structures , 2014, 1412.3111.

[29]  M. Jarvis,et al.  Variation of galactic cold gas reservoirs with stellar mass , 2014, 1412.0852.

[30]  C. Baugh,et al.  The origin of the atomic and molecular gas contents of early-type galaxies - II. Misaligned gas accretion , 2014, 1410.5437.

[31]  M. Fabricius,et al.  THE KMOS3D SURVEY: DESIGN, FIRST RESULTS, AND THE EVOLUTION OF GALAXY KINEMATICS FROM 0.7 ⩽ z ⩽ 2.7 , 2014, 1409.6791.

[32]  F. Bertoldi,et al.  Evolution of the dust emission of massive galaxies up to z=4 and constraints on their dominant mode of star formation , 2014, 1409.5796.

[33]  B. Weiner,et al.  COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS , 2014, 1409.1171.

[34]  D. Elbaz,et al.  CO excitation of normal star forming galaxies out to $z=1.5$ as regulated by the properties of their interstellar medium , 2014, 1409.8158.

[35]  D. Elbaz,et al.  The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day , 2014, 1409.5433.

[36]  G. Brammer,et al.  CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.

[37]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[38]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[39]  G. Kauffmann,et al.  The variation in molecular gas depletion time among nearby galaxies: what are the main parameter dependences? , 2014, 1404.7138.

[40]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[41]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[42]  R. Maiolino,et al.  From haloes to Galaxies – I. The dynamics of the gas regulator model and the implied cosmic sSFR history , 2014, 1402.5964.

[43]  A. Dekel,et al.  An analytic solution for the minimal bathtub toy model: challenges in the star formation history of high-z galaxies , 2014, 1402.2283.

[44]  H. Ferguson,et al.  BULGE GROWTH AND QUENCHING SINCE z = 2.5 IN CANDELS/3D-HST , 2014, 1402.0866.

[45]  K. Sheth,et al.  THE EVOLUTION OF INTERSTELLAR MEDIUM MASS PROBED BY DUST EMISSION: ALMA OBSERVATIONS AT z = 0.3–2 , 2014, The Astrophysical Journal.

[46]  G. J. Bendo,et al.  Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range , 2013, 1312.3442.

[47]  F. Mannucci,et al.  The evolution of the dust and gas content in galaxies , 2013, 1311.3670.

[48]  A. Cimatti,et al.  The evolution of the dust temperatures of galaxies in the SFR–M∗ plane up to z ~ 2 , 2013, 1311.2956.

[49]  D. Elbaz,et al.  REGULARITY UNDERLYING COMPLEXITY: A REDSHIFT-INDEPENDENT DESCRIPTION OF THE CONTINUOUS VARIATION OF GALAXY-SCALE MOLECULAR GAS PROPERTIES IN THE MASS-STAR FORMATION RATE PLANE , 2013, 1303.4392.

[50]  S. Wuyts,et al.  VALIDATION OF THE EQUILIBRIUM MODEL FOR GALAXY EVOLUTION TO z ∼ 3 THROUGH MOLECULAR GAS AND DUST OBSERVATIONS OF LENSED STAR-FORMING GALAXIES , 2013, 1309.3281.

[51]  D. Schiminovich,et al.  The GALEX Arecibo SDSS Survey - VIII. Final data release. The effect of group environment on the gas content of massive galaxies , 2013, 1308.1676.

[52]  C. Carollo,et al.  GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY–MASS–STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS , 2013, 1303.5059.

[53]  L. Pozzetti,et al.  Panchromatic spectral energy distributions of Herschel sources , 2013, 1301.4496.

[54]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[55]  H. Rix,et al.  MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES , 2013, 1301.2328.

[56]  A. Bolatto,et al.  THE EGNoG SURVEY: GAS EXCITATION IN NORMAL GALAXIES AT z ≈ 0.3 , 2013, 1301.0631.

[57]  E. Pellegrini,et al.  THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES , 2012, 1212.1208.

[58]  F. Walter,et al.  Gas fraction and star formation efficiency at z < 1.0 , 2012, 1209.3665.

[59]  A. M. Swinbank,et al.  A survey of molecular gas in luminous sub-millimetre galaxies , 2012, 1205.1511.

[60]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[61]  B. Weiner,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1–3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES , 2012, 1211.5743.

[62]  D. Elbaz,et al.  Dust temperature and CO → H2 conversion factor variations in the SFR-M∗ plane , 2012, 1210.2760.

[63]  D. Elbaz,et al.  THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS , 2012, 1210.1035.

[64]  D. Elbaz,et al.  THE MOLECULAR GAS CONTENT OF z = 3 LYMAN BREAK GALAXIES: EVIDENCE OF A NON-EVOLVING GAS FRACTION IN MAIN-SEQUENCE GALAXIES AT z > 2 , 2012, 1209.1484.

[65]  D. Schiminovich,et al.  THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES , 2012, 1209.0476.

[66]  G. Brammer,et al.  THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.

[67]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[68]  Oxford,et al.  Predictions for the CO emission of galaxies from a coupled simulation of galaxy formation and photon dominated regions , 2012, 1204.0795.

[69]  Qi Guo,et al.  The effect of star formation on the redshift evolution of interstellar metals, atomic and molecular gas in galaxies , 2012, 1203.5280.

[70]  A. Cimatti,et al.  A Herschel view of the far-infrared properties of submillimetre galaxies , 2012, 1202.0761.

[71]  Christine D. Wilson,et al.  Can dust emission be used to map the interstellar medium in high-redshift galaxies? Results from the Herschel Reference Survey , 2012, 1202.0547.

[72]  M. Lombardi,et al.  STAR FORMATION RATES IN MOLECULAR CLOUDS AND THE NATURE OF THE EXTRAGALACTIC SCALING RELATIONS , 2011, 1112.4466.

[73]  S. García-Burillo,et al.  Star-formation laws in luminous infrared galaxies. New observational constraints on models , 2011, 1111.6773.

[74]  A. Cimatti,et al.  THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES , 2011, 1106.1186.

[75]  D. Clements,et al.  CAN DUST EMISSION BE USED TO ESTIMATE THE MASS OF THE INTERSTELLAR MEDIUM IN GALAXIES—A PILOT PROJECT WITH THE HERSCHEL REFERENCE SURVEY , 2012 .

[76]  T. Fischer,et al.  NUCLEOSYNTHESIS IN CORE-COLLAPSE SUPERNOVA EXPLOSIONS TRIGGERED BY A QUARK–HADRON PHASE TRANSITION , 2011, 1112.5684.

[77]  B. Groves,et al.  HERSCHEL FAR-INFRARED AND SUBMILLIMETER PHOTOMETRY FOR THE KINGFISH SAMPLE OF NEARBY GALAXIES , 2011, 1112.1093.

[78]  B. Groves,et al.  KINGFISH—Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel: Survey Description and Image Atlas , 2011, 1111.4438.

[79]  Puragra Guhathakurta,et al.  The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshift , 2011, 1109.5698.

[80]  L. S. Anusha,et al.  POLARIZED LINE FORMATION IN MULTI-DIMENSIONAL MEDIA. IV. A FOURIER DECOMPOSITION TECHNIQUE TO FORMULATE THE TRANSFER EQUATION WITH ANGLE-DEPENDENT PARTIAL FREQUENCY REDISTRIBUTION , 2011, 1308.3447.

[81]  D. Elbaz,et al.  GOODS-HERSCHEL: GAS-TO-DUST MASS RATIOS AND CO-TO-H2 CONVERSION FACTORS IN NORMAL AND STARBURSTING GALAXIES AT HIGH-z , 2011, 1109.1140.

[82]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[83]  K. Finlator,et al.  An analytic model for the evolution of the stellar, gas and metal content of galaxies , 2011, 1108.0426.

[84]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[85]  Matthias Rempel,et al.  SUBSURFACE MAGNETIC FIELD AND FLOW STRUCTURE OF SIMULATED SUNSPOTS , 2011, 1106.6287.

[86]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[87]  B. Magnelli,et al.  PACS Evolutionary Probe (PEP) – a Herschel key program , 2011, 1106.3285.

[88]  B. Weiner,et al.  THE METALLICITY DEPENDENCE OF THE CO → H2 CONVERSION FACTOR IN z ⩾ 1 STAR-FORMING GALAXIES , 2011, 1106.2098.

[89]  H. Rix,et al.  OBSERVATIONAL EVIDENCE AGAINST LONG-LIVED SPIRAL ARMS IN GALAXIES , 2011, 1105.5141.

[90]  C. Kramer,et al.  A MOLECULAR STAR FORMATION LAW IN THE ATOMIC-GAS-DOMINATED REGIME IN NEARBY GALAXIES , 2011, 1105.4605.

[91]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[92]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[93]  Durham,et al.  Cosmic evolution of the atomic and molecular gas contents of galaxies , 2011, 1105.2294.

[94]  K. Finlator,et al.  Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.

[95]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - II. The non-universality of the molecular gas depletion time-scale , 2011, 1104.0019.

[96]  N. Pogorelov,et al.  COSMIC-RAY MODULATION BY THE GLOBAL MERGED INTERACTION REGION IN THE HELIOSHEATH , 2011 .

[97]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies – I. Relations between H2, H i, stellar content and structural properties , 2011, 1103.1642.

[98]  Norikazu Mizuno,et al.  THE CO-TO-H2 CONVERSION FACTOR FROM INFRARED DUST EMISSION ACROSS THE LOCAL GROUP , 2011, 1102.4618.

[99]  E. Brinks,et al.  A CONSTANT MOLECULAR GAS DEPLETION TIME IN NEARBY DISK GALAXIES , 2011, 1102.1720.

[100]  G. Zamorani,et al.  THE SINS SURVEY OF z ∼ 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS , 2010, 1011.5360.

[101]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[102]  F. Walter,et al.  Galaxy Evolution and Star Formation Efficiency at 0.2 < z < 0.6 , 2010, 1009.2040.

[103]  M.Vaccari,et al.  Herschel unveils a puzzling uniformity of distant dusty galaxies , 2010, 1005.2859.

[104]  A. Cimatti,et al.  The first Herschel view of the mass-SFR link in high-z galaxies , 2010, 1005.1089.

[105]  A. Cimatti,et al.  Dissecting the cosmic infra-red background with Herschel/PEP , 2010, 1005.1073.

[106]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.

[107]  B. Weiner,et al.  A study of the gas–star formation relation over cosmic time , 2010, 1003.5180.

[108]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[109]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[110]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[111]  A. Dekel,et al.  Survival of star-forming giant clumps in high-redshift galaxies , 2010, 1001.0765.

[112]  G. Cresci,et al.  THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS , 2009, 0912.1858.

[113]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[114]  Christopher D. Martin,et al.  The GALEX Arecibo SDSS Survey I: gas fraction scaling relations of massive galaxies and first data release , 2009, 0912.1610.

[115]  B. Garilli,et al.  THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .

[116]  L. Blitz,et al.  THE GAS CONSUMPTION HISTORY TO REDSHIFT 4 , 2009, 0909.3840.

[117]  E. Brinks,et al.  HERACLES: THE HERA CO LINE EXTRAGALACTIC SURVEY , 2009, 0905.4742.

[118]  D. Elbaz,et al.  LOW MILKY-WAY-LIKE MOLECULAR GAS EXCITATION OF MASSIVE DISK GALAXIES AT z ∼ 1.5 , 2009, 0905.3637.

[119]  L. Kewley,et al.  GOALS: The Great Observatories All-Sky LIRG Survey , 2009, 0904.4498.

[120]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[121]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[122]  B. Elmegreen,et al.  BULGE AND CLUMP EVOLUTION IN HUBBLE ULTRA DEEP FIELD CLUMP CLUSTERS, CHAINS AND SPIRAL GALAXIES , 2008, 0810.5404.

[123]  R. Wechsler,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME , 2008 .

[124]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[125]  B. Madore,et al.  THE STAR FORMATION LAW IN NEARBY GALAXIES ON SUB-KPC SCALES , 2008, 0810.2541.

[126]  Marijn Franx,et al.  Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.

[127]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[128]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[129]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[130]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[131]  University of Hertfordshire,et al.  Evidence of enhanced star formation efficiency in luminous and ultraluminous infrared galaxies , 2007, 0712.0582.

[132]  Benjamin D. Johnson,et al.  The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence , 2007, 0711.4823.

[133]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[134]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[135]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[136]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[137]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[138]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[139]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[140]  E. L. Wright,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[141]  J. Dunlop,et al.  From Z-Machines to Alma: (SUB) Millimeter Spectroscopy of Galaxies , 2007 .

[142]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[143]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[144]  A. Cimatti,et al.  A Wide Area Survey for High-Redshift Massive Galaxies. I. Number Counts and Clustering of BzKs and EROs , 2005, astro-ph/0510299.

[145]  F. Bertoldi,et al.  High-Resolution Millimeter Imaging of Submillimeter Galaxies , 2005 .

[146]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[147]  Edinburgh,et al.  An interferometric CO survey of luminous submillimetre galaxies , 2005, astro-ph/0503055.

[148]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[149]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[150]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[151]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[152]  P. Solomon,et al.  The Star Formation Rate and Dense Molecular Gas in Galaxies , 2003, astro-ph/0310339.

[153]  S. M. Fall,et al.  The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging , 2003, astro-ph/0309105.

[154]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[155]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[156]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[157]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[158]  J. Silk Feedback, Disk Self-Regulation, and Galaxy Formation , 1996, astro-ph/9612117.

[159]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[160]  N. Scoville,et al.  Molecular gas in galaxies , 1991 .

[161]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[162]  F. Schloerb,et al.  Carbon monoxide as an extragalactic mass tracer , 1986 .