The complexity of sea wave loads and the number of design variables involved in the design of laminated composites for naval applications makes this a challenging problem. Traditional methodologies for engineering design and analysis are not suitable to deal with these kinds of design problems. This work presents a methodology based on evolutionary algorithms and stochastic structural mechanics to design high-reliability naval multilayer composite structural panels.. The mechanical response of structural panels was modeled by using the Multilayer First Order Shear Deformable Plate Theory and the Finite Element Method. Sea wave loads were modeled as stochastic dynamic loads by using the Simulation Based Reliability Analysis approach. The structural reliability of the panel, as a function of the composite ply’s fiber direction, was considered a design variable. In order to maximize the structural reliability, an optimization methodology based on Genetic Algorithms was proposed. For the design process, a computational code using FORTRAN® and the OpenMP® library for parallel computing was developed. The proposed methodology was applied to the design of composite naval panels and results were compared to those obtained through traditional design methodologies. The results show increased reliability of the panels in all cases analyzed. The proposed methodology is, thus, shown as a reliable engineering tool to optimize the structural performance of existing designs.
[1]
J. Reddy.
Mechanics of laminated composite plates and shells : theory and analysis
,
1996
.
[2]
Riccardo Poli,et al.
Particle swarm optimization
,
1995,
Swarm Intelligence.
[3]
L. Kollár,et al.
Mechanics of Composite Structures
,
2003
.
[4]
Ozden O. Ochoa,et al.
Finite Element Analysis of Composite Laminates
,
1992
.
[5]
Komsan Maneepan.
Genetic algorithm based optimisation of FRP composite plates in ship structures
,
2007
.
[6]
Marc Schoenauer,et al.
Genetic algorithms for solving air traffic control conflicts
,
1993,
Proceedings of 9th IEEE Conference on Artificial Intelligence for Applications.
[7]
Achintya Haldar,et al.
Reliability Assessment Using Stochastic Finite Element Analysis
,
2000
.
[8]
J. Wiśniewski,et al.
Optimal Design of Reinforcing Fibres in Multilayer Composites using Genetic Algorithms
,
2004
.
[9]
G. Soremekun.
Genetic Algorithms for Composite Laminate Design and Optimization
,
1997
.