The Chemistry behind Catechol-Based Adhesion.

The adhesion of some marine organisms to almost any kind of surface in wet conditions has aroused increasing interest in recent decades. Numerous fundamental studies have been performed to understand the scientific basis of this behaviour, with catechols having been found to play a key role. Several novel bio-inspired adhesives and coatings with value-added performances have been developed by taking advantage of the knowledge gained from these studies. To date there has been no detailed overview focusing exclusively on the complex mode of action of these materials. The aim of this Review is to present recent investigations that elucidate the origin of the strong and versatile adsorption capacities of the catechol moiety and the effects of extrinsic factors that play important roles in the overall adhesion process, such as pH value, solvent, and the presence of metal ions. The aim is to detail the chemistry behind the astonishing properties of natural and synthetic catechol-based adhesive materials.

[1]  J. Herbert Waite,et al.  Hydrophobic enhancement of Dopa-mediated adhesion in a mussel foot protein. , 2013, Journal of the American Chemical Society.

[2]  Metin Sitti,et al.  Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[3]  D. Bruce Chase,et al.  Ferric Ion Complexes of a DOPA-Containing Adhesive Protein from Mytilus edulis , 1996 .

[4]  James D. White,et al.  Underwater Bonding with Charged Polymer Mimics of Marine Mussel Adhesive Proteins , 2011 .

[5]  William M. Chirdon,et al.  Adsorption of catechol and comparative solutes on hydroxyapatite. , 2003, Journal of biomedical materials research. Part B, Applied biomaterials.

[6]  Bum Jin Kim,et al.  Mussel-inspired adhesive protein-based electrospun nanofibers reinforced by Fe(iii)-DOPA complexation. , 2015, Journal of materials chemistry. B.

[7]  T. L. Coombs,et al.  The kinetics of accumulation and excretion of ferric hydroxide in Mytilus edulis (I.) and its distribution in the tissues , 1976 .

[8]  Hongbo Zeng,et al.  Adhesion mechanism in a DOPA-deficient foot protein from green mussels(). , 2012, Soft matter.

[9]  Miaoer Yu,et al.  Role of l-3,4-Dihydroxyphenylalanine in Mussel Adhesive Proteins , 1999 .

[10]  J. Herbert Waite,et al.  Mussel protein adhesion depends on thiol-mediated redox modulation , 2011, Nature chemical biology.

[11]  Jing Wang,et al.  Co-polypeptides of 3,4-dihydroxyphenylalanine and L-lysine to mimic marine adhesive protein. , 2007, Biomaterials.

[12]  K. Neoh,et al.  Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[13]  S. Tao,et al.  Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes , 2010 .

[14]  Kristin Sott,et al.  Adsorption behavior and enzymatically or chemically induced cross‐linking of a mussel adhesive protein , 2000 .

[15]  Steven W. Taylor,et al.  trans-2,3-cis-3,4-Dihydroxyproline, a New Naturally Occurring Amino Acid, Is the Sixth Residue in the Tandemly Repeated Consensus Decapeptides of an Adhesive Protein from Mytilus edulis , 1994 .

[16]  Jonathan J. Wilker,et al.  Ambivalent Adhesives: Combining Biomimetic Cross-Linking With Antiadhesive Oligo(ethylene glycol). , 2012, Macromolecules.

[17]  K. Hansen,et al.  Characterization of a Cystine-Rich Polyphenolic Protein Family from the Blue Mussel Mytilus edulis L. , 1992, The Biological bulletin.

[18]  Ha-Ryong Kim,et al.  Conductive poly(high internal phase emulsion) foams incorporated with polydopamine-coated carbon nanotubes , 2017 .

[19]  Jonathan J. Wilker Das eisenverstärkte Haftsystem von Meeresmuscheln , 2010 .

[20]  An Underwater Surface‐Drying Peptide Inspired by a Mussel Adhesive Protein , 2016, Advanced functional materials.

[21]  Dusty R. Miller,et al.  The staying power of adhesion-associated antioxidant activity in Mytilus californianus , 2015, Journal of The Royal Society Interface.

[22]  Xue-qing Gong,et al.  Hydrogen Bonding Controls the Dynamics of Catechol Adsorbed on a TiO2(110) Surface , 2010, Science.

[23]  Marleen Kamperman,et al.  Jack of all trades: versatile catechol crosslinking mechanisms. , 2014, Chemical Society reviews.

[24]  Derek L. Patton,et al.  Mussel-Inspired Thiol–Ene Polymer Networks: Influencing Network Properties and Adhesion with Catechol Functionality , 2012 .

[25]  Henrik Birkedal,et al.  pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli , 2011, Proceedings of the National Academy of Sciences.

[26]  T. Brinck,et al.  In situ investigations of Fe3+ induced complexation of adsorbed Mefp-1 protein film on iron substrate. , 2013, Journal of colloid and interface science.

[27]  L. Curtiss,et al.  Density functional study of the TiO2–dopamine complex , 2005 .

[28]  S. Tosatti,et al.  Surface Assembly of Catechol-Functionalized Poly(l-lysine)-graft-poly(ethylene glycol) Copolymer on Titanium Exploiting Combined Electrostatically Driven Self-Organization and Biomimetic Strong Adhesion , 2010 .

[29]  M. McBride,et al.  Chemisorption of catechol on gibbsite, boehmite, and noncrystalline alumina surfaces , 1988 .

[30]  J. Faraudo,et al.  Bioinspired catechol-terminated self-assembled monolayers with enhanced adhesion properties. , 2014, Small.

[31]  Hongbo Zeng,et al.  Marine mussel adhesion: biochemistry, mechanisms, and biomimetics , 2013 .

[32]  D. Ruiz-Molina,et al.  Copolymerization of a Catechol and a Diamine as a Versatile Polydopamine-Like Platform for Surface Functionalization: The Case of a Hydrophobic Coating , 2017, Biomimetics.

[33]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[34]  Devin G. Barrett,et al.  Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics. , 2016, ACS nano.

[35]  Annabella Selloni,et al.  Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations , 2000 .

[36]  Youbing Mu,et al.  Synthesis and adhesive property study of polyoxetanes grafted with catechols via Cu(I)-catalyzed click chemistry , 2014 .

[37]  Hongbo Zeng,et al.  Understanding the Deposition and Surface Interactions of Gypsum , 2011 .

[38]  Metin Sitti,et al.  Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning. , 2011, Biomacromolecules.

[39]  J. Faraudo,et al.  Switchable self-assembly of a bioinspired alkyl catechol at a solid/liquid interface: competitive interfacial, noncovalent, and solvent interactions. , 2012, Chemistry.

[40]  Delphine Gourdon,et al.  Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3 , 2007, Proceedings of the National Academy of Sciences.

[41]  J. Waite,et al.  Polyphosphoprotein from the adhesive pads of Mytilus edulis. , 2001, Biochemistry.

[42]  Hyung Joon Cha,et al.  Switch of Surface Adhesion to Cohesion by Dopa-Fe3+ Complexation, in Response to Microenvironment at the Mussel Plaque/Substrate Interface , 2016 .

[43]  Jeong Hyun Seo,et al.  Mussel-mimetic protein-based adhesive hydrogel. , 2014, Biomacromolecules.

[44]  Jacob N Israelachvili,et al.  Effects of Interfacial Redox in Mussel Adhesive Protein Films on Mica , 2011, Advanced materials.

[45]  Peter Fratzl,et al.  Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings , 2010, Science.

[46]  J. Waite,et al.  Diverse Strategies of Protein Sclerotization in Marine Invertebrates: Structure–Property Relationships in Natural Biomaterials , 2010 .

[47]  S. Hardman,et al.  Adsorption of dopamine on rutile TiO2 (110): a photoemission and near-edge X-ray absorption fine structure study. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[48]  H. Birkedal,et al.  Mussel-Inspired Materials: Self-Healing through Coordination Chemistry. , 2016, Chemistry.

[49]  Dusty R. Miller,et al.  Tough coating proteins: subtle sequence variation modulates cohesion. , 2015, Biomacromolecules.

[50]  Shaoyi Jiang,et al.  Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. , 2010, Biomaterials.

[51]  S. Tosatti,et al.  Fabricating chemical gradients on oxide surfaces by means of fluorinated, catechol-based, self-assembled monolayers. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[52]  Steven W. Taylor,et al.  Polarographic and Spectrophotometric Investigation of Iron(III) Complexation to 3,4-Dihydroxyphenylalanine-Containing Peptides and Proteins from Mytilus edulis , 1994 .

[53]  Matthew J. Harrington,et al.  Mussel foot protein-1 (mcfp-1) interaction with titania surfaces(). , 2012, Journal of materials chemistry.

[54]  K. Biemann,et al.  Hydroxyarginine-containing Polyphenolic Proteins in the Adhesive Plaques of the Marine Mussel Mytilus edulis(*) , 1995, The Journal of Biological Chemistry.

[55]  Marco Cecchini,et al.  Adsorption of Aromatic and Anti-Aromatic Systems on Graphene through π−π Stacking , 2010 .

[56]  Martin E. R. Shanahan,et al.  Viscoelastic Dissipation in Wetting and Adhesion Phenomena , 1995 .

[57]  M. C. Stuart,et al.  The effect of molecular composition and crosslinking on adhesion of a bio-inspired adhesive , 2015 .

[58]  Peter X Ma,et al.  Stimuli-responsive supramolecular hydrogels with high extensibility and fast self-healing via precoordinated mussel-inspired chemistry. , 2015, Chemistry of materials : a publication of the American Chemical Society.

[59]  J. Nedeljković,et al.  The effect of substituents on the surface modification of anatase nanoparticles with catecholate-type ligands: a combined DFT and experimental study. , 2014, Physical chemistry chemical physics : PCCP.

[60]  Wei Chen,et al.  Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. , 2007, Environmental science & technology.

[61]  Jennifer Monahan,et al.  Specificity of metal ion cross-linking in marine mussel adhesives. , 2003, Chemical communications.

[62]  I. Zhitomirsky,et al.  Density functional theory and experimental studies of caffeic acid adsorption on zinc oxide and titanium dioxide nanoparticles , 2015 .

[63]  P. Messersmith,et al.  Enzymatically Degradable Mussel-Inspired Adhesive Hydrogel , 2011, Biomacromolecules.

[64]  Paula Z. Araujo,et al.  Interaction of catechol and gallic acid with titanium dioxide in aqueous suspensions. 1. Equilibrium studies. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[65]  Wei Chen,et al.  A Biomimetic Mussel‐Inspired ε‐Poly‐l‐lysine Hydrogel with Robust Tissue‐Anchor and Anti‐Infection Capacity , 2017 .

[66]  Metin Sitti,et al.  Composition‐dependent underwater adhesion of catechol‐bearing hydrogels , 2016 .

[67]  M. Mehdizadeh,et al.  Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. , 2012, Biomaterials.

[68]  Jacob N Israelachvili,et al.  Peptide Length and Dopa Determine Iron‐Mediated Cohesion of Mussel Foot Proteins , 2015, Advanced functional materials.

[69]  J. Herbert Waite,et al.  Mussel adhesion – essential footwork , 2017, Journal of Experimental Biology.

[70]  Devin G. Barrett,et al.  Mechanically Robust, Negative‐Swelling, Mussel‐Inspired Tissue Adhesives , 2013, Advanced healthcare materials.

[71]  Ying Li,et al.  Single-molecule study of the synergistic effects of positive charges and Dopa for wet adhesion. , 2017, Journal of materials chemistry. B.

[72]  James D. White,et al.  Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. , 2012, Journal of the American Chemical Society.

[73]  Qian Feng,et al.  Preserving the adhesion of catechol-conjugated hydrogels by thiourea-quinone coupling. , 2016, Biomaterials science.

[74]  S. Nagase,et al.  Adsorption of catechol on a wet silica surface: density functional theory study , 2011 .

[75]  G. Rahman,et al.  Investigating the adsorption mechanism of glycine in comparison with catechol on cristobalite surface using density functional theory for bio-adhesive materials , 2016 .

[76]  L. Morrison,et al.  The chemistry of stalked barnacle adhesive (Lepas anatifera) , 2015, Interface Focus.

[77]  R. Bitton,et al.  Change of colloidal and surface properties of Mytilus edulis foot protein 1 in the presence of an oxidation (NaIO4) or a complex-binding (Cu2+) agent. , 2009, Biomacromolecules.

[78]  P. Jönsson,et al.  Conjugation of cyclodextrin to magnetic Fe3O4 nanoparticles via polydopamine coating for drug delivery , 2018 .

[79]  S. Tosatti,et al.  Poly(ethylene glycol) adlayers immobilized to metal oxide substrates through catechol derivatives: influence of assembly conditions on formation and stability. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[80]  Chun-Jen Huang,et al.  Functionalization of Polydopamine via the Aza-Michael Reaction for Antimicrobial Interfaces. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[81]  Thomas W. McCarthy,et al.  Managing Redox Chemistry To Deter Marine Biological Adhesion , 2016 .

[82]  A. Butler,et al.  Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement , 2015, Science.

[83]  Xue-qing Gong,et al.  Correlation between bonding geometry and band gap states at organic-inorganic interfaces: catechol on rutile TiO2(110). , 2009, Journal of the American Chemical Society.

[84]  Courtney L. Jenkins,et al.  Molecular weight effects upon the adhesive bonding of a mussel mimetic polymer. , 2013, ACS applied materials & interfaces.

[85]  J. Wu,et al.  Mussel-inspired chemistry for robust and surface-modifiable multilayer films. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[86]  Papov,et al.  海産イガイ,Mytilus edulis(イガイ科)の接着プラーク内のヒドロキシアルギニン含有性ポリフェーノール蛋白質 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1995 .

[87]  Xinling Wang,et al.  Effects of dopamine-containing curing agents on the water resistance of epoxy adhesives , 2016, Journal of Materials Science.

[88]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[89]  J. Israelachvili,et al.  Role of nanometer roughness on the adhesion and friction of a rough polymer surface and a molecularly smooth mica surface , 2007 .

[90]  Scott Renneckar,et al.  Cation-pi interactions as a mechanism in technical lignin adsorption to cationic surfaces. , 2009, Biomacromolecules.

[91]  S. Ramakrishna,et al.  Poly(dopamine)-modified carbon nanotube multilayered film and its effects on macrophages , 2017 .

[92]  Bruce P. Lee,et al.  Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups. , 2002, Biomacromolecules.

[93]  M. Lim,et al.  Density functional theory study on the cross-linking of mussel adhesive proteins. , 2015, The journal of physical chemistry. B.

[94]  J. Herbert Waite,et al.  Defining the Catechol-Cation Synergy for Enhanced Wet Adhesion to Mineral Surfaces. , 2016, Journal of the American Chemical Society.

[95]  J. Israelachvili,et al.  Microphase Behavior and Enhanced Wet-Cohesion of Synthetic Copolyampholytes Inspired by a Mussel Foot Protein. , 2015, Journal of the American Chemical Society.

[96]  J. Waite,et al.  Rotational Echo Double Resonance Detection of Cross-links Formed in Mussel Byssus under High-Flow Stress* , 1999, The Journal of Biological Chemistry.

[97]  Z. Lei,et al.  The synthesis and tissue adhesiveness of temperature-sensitive hyperbranched poly(amino acid)s with functional side groups , 2016 .

[98]  Yizhong Huang,et al.  Transition-metal-ion-mediated polymerization of dopamine: mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticle-graphene hybrids. , 2014, Chemistry.

[99]  J. Wilker The iron-fortified adhesive system of marine mussels. , 2010, Angewandte Chemie.

[100]  J. Israelachvili,et al.  Bridging Adhesion of Mussel-Inspired Peptides: Role of Charge, Chain Length, and Surface Type , 2014, Langmuir : the ACS journal of surfaces and colloids.

[101]  Bum Jin Kim,et al.  Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery. , 2015, Angewandte Chemie.

[102]  Gilbert C Walker,et al.  Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. , 2002, Journal of the American Chemical Society.

[103]  Jimin P. Kim,et al.  Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. , 2017, Biomaterials.

[104]  Hongbo Zeng,et al.  Marine mussel adhesion and bio-inspired wet adhesives , 2016 .

[105]  J. Waite,et al.  Cross-linking in adhesive quinoproteins: studies with model decapeptides. , 2000, Biochemistry.

[106]  Georg E Fantner,et al.  Protective coatings on extensible biofibres. , 2007, Nature materials.

[107]  Xuehong Lu,et al.  Shape memory polyurethane with polydopamine-coated nanosheets: Simultaneous enhancement of recovery stress and strain recovery ratio and the underlying mechanisms , 2014 .

[108]  K. Kamino Novel barnacle underwater adhesive protein is a charged amino acid-rich protein constituted by a Cys-rich repetitive sequence. , 2001, The Biochemical journal.

[109]  Jennifer Monahan,et al.  Cross-linking the protein precursor of marine mussel adhesives: bulk measurements and reagents for curing. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[110]  Feifei Liu,et al.  Adsorption of natural organic matter analogues by multi-walled carbon nanotubes: Comparison with powdered activated carbon , 2013 .

[111]  Admir Masic,et al.  Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation , 2015, Journal of The Royal Society Interface.

[112]  J. Sanz,et al.  Electronic structure and optical spectra of catechol on TiO2 nanoparticles from real time TD-DFT simulations. , 2011, Physical chemistry chemical physics : PCCP.

[113]  Jian Yang,et al.  Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives. , 2016, Biomaterials.

[114]  Courtney L. Jenkins,et al.  Integrating Mussel Chemistry into a Bio-Based Polymer to Create Degradable Adhesives , 2017 .

[115]  Bruce P. Lee,et al.  Mussel-Inspired Adhesives and Coatings. , 2011, Annual review of materials research.

[116]  E. Sone,et al.  Zebra mussel adhesion: structure of the byssal adhesive apparatus in the freshwater mussel, Dreissena polymorpha. , 2012, Journal of structural biology.

[117]  Elena Degtyar,et al.  Die Bedeutung von Metallionen für die mechanischen Eigenschaften von Biomaterialien auf Proteinbasis , 2014 .

[118]  M. Grätzel,et al.  Dopamine adsorption on anatase TiO2(101): a photoemission and NEXAFS spectroscopy study. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[119]  Xiaowen Wang,et al.  A new insight into PAM/graphene-based adsorption of water-soluble aromatic pollutants , 2017, Journal of Materials Science.

[120]  Ki-Chun Yoo,et al.  Hollow hyaluronic acid particles by competition between adhesive and cohesive properties of catechol for anticancer drug carrier. , 2017, Carbohydrate polymers.

[121]  Peter Fratzl,et al.  The mechanical role of metal ions in biogenic protein-based materials. , 2014, Angewandte Chemie.

[122]  D. A. Dougherty,et al.  The Cationminus signpi Interaction. , 1997, Chemical reviews.

[123]  M. Sever,et al.  Metal-mediated cross-linking in the generation of a marine-mussel adhesive. , 2004, Angewandte Chemie.

[124]  R. Haag,et al.  Muschel‐inspirierte dendritische Polymere als universelle multifunktionale Beschichtungen , 2014 .

[125]  G. Stucky,et al.  Metals and the integrity of a biological coating: the cuticle of mussel byssus. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[126]  Xuehong Lu,et al.  A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin. , 2011, ACS applied materials & interfaces.

[127]  Bruce P. Lee,et al.  Rapid Gel Formation and Adhesion in Photocurable and Biodegradable Block Copolymers with High DOPA Content , 2006 .

[128]  J. Hernando,et al.  Versatile Nanostructured Materials via Direct Reaction of Functionalized Catechols , 2013, Advanced materials.

[129]  Anthony J. Kinloch,et al.  The science of adhesion , 1980 .

[130]  J. Barralet,et al.  Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. , 2015, Biomaterials.

[131]  Xiaoyan Yuan,et al.  In situ formation of adhesive hydrogels based on PL with laterally grafted catechol groups and their bonding efficacy to wet organic substrates , 2015, Journal of Materials Science: Materials in Medicine.

[132]  H. Metiu,et al.  Catechol and HCl Adsorption on TiO2(110) in Vacuum and at the Water-TiO2 Interface. , 2015, The journal of physical chemistry letters.

[133]  Yu,et al.  Synthetic Polypeptide Mimics of Marine Adhesives. , 1998, Macromolecules.

[134]  Norbert F Scherer,et al.  Single-molecule mechanics of mussel adhesion , 2006, Proceedings of the National Academy of Sciences.

[135]  Hongbo Zeng,et al.  Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water , 2010, Proceedings of the National Academy of Sciences.

[136]  Wantai Yang,et al.  Helical poly(N-propargylamide)s with functional catechol groups: Synthesis and adsorption of metal ions in aqueous solution , 2010 .

[137]  Feng Zhou,et al.  Bioinspired catecholic chemistry for surface modification. , 2011, Chemical Society reviews.

[138]  Daniel Ruiz-Molina,et al.  Self-assembly of alkylcatechols on HOPG investigated by scanning tunneling microscopy and molecular dynamics simulations , 2012 .

[139]  Hongbo Zeng,et al.  Cation-π interaction in DOPA-deficient mussel adhesive protein mfp-1. , 2015, Journal of materials chemistry. B.

[140]  Li-Ming Yang,et al.  A fundamental understanding of catechol and water adsorption on a hydrophilic silica surface: exploring the underwater adhesion mechanism of mussels on an atomic scale. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[141]  W. Peukert,et al.  A General Approach To Study the Thermodynamics of Ligand Adsorption to Colloidal Surfaces Demonstrated by Means of Catechols Binding to Zinc Oxide Quantum Dots , 2015 .

[142]  Y. Mai,et al.  Reinforcement of polyether polyurethane with dopamine-modified clay: the role of interfacial hydrogen bonding. , 2012, ACS applied materials & interfaces.

[143]  Raquel P. Herrera,et al.  Regulatory parameters of self-healing alginate hydrogel networks prepared via mussel-inspired dynamic chemistry , 2016 .

[144]  J. Herbert Waite,et al.  Boronate Complex Formation with Dopa Containing Mussel Adhesive Protein Retards pH-Induced Oxidation and Enables Adhesion to Mica , 2014, PloS one.

[145]  Xingfa Gao,et al.  Density Functional Theory Study of Catechol Adhesion on Silica Surfaces , 2010 .

[146]  Shuang Li,et al.  Adsorption and properties of aromatic amino acids on single-walled carbon nanotubes. , 2012, Nanoscale.

[147]  J. Israelachvili,et al.  OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA , 113 ( 17 ) ISSN 0027-8424 , 2016 .

[148]  D. Bowler,et al.  Adsorption of Catechol on TiO2 Rutile (100): A Density Functional Theory Investigation , 2010 .

[149]  C. Verma,et al.  Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins , 2015, Nature Communications.

[150]  A. Butler,et al.  Siderophores and mussel foot proteins: the role of catechol, cations, and metal coordination in surface adhesion , 2017, JBIC Journal of Biological Inorganic Chemistry.

[151]  S. Moulay Dopa/Catechol-Tethered Polymers: Bioadhesives and Biomimetic Adhesive Materials , 2014 .

[152]  J Herbert Waite,et al.  Adhesion à la Moule1 , 2002, Integrative and comparative biology.

[153]  S. Daubner,et al.  Tyrosine hydroxylase and regulation of dopamine synthesis. , 2011, Archives of biochemistry and biophysics.

[154]  P. Messersmith,et al.  Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[155]  F. Busqué,et al.  Catechol‐Based Biomimetic Functional Materials , 2013, Advanced materials.

[156]  Bruce P. Lee,et al.  Effect of pH on the Rate of Curing and Bioadhesive Properties of Dopamine Functionalized Poly(ethylene glycol) Hydrogels , 2014, Biomacromolecules.

[157]  Joseph L. Lenhart,et al.  Molecular Dynamics Simulations of Adsorption of Catechol and Related Phenolic Compounds to Alumina Surfaces , 2015 .

[158]  L. Weng,et al.  Mussel-inspired adhesive and transferable free-standing films by self-assembling dexamethasone encapsulated BSA nanoparticles and vancomycin immobilized oxidized alginate. , 2015, Colloids and surfaces. B, Biointerfaces.

[159]  J. Waite,et al.  Halogenated DOPA in a Marine Adhesive Protein , 2009, The Journal of adhesion.

[160]  Bruce P. Lee,et al.  Novel Hydrogel Actuator Inspired by Reversible Mussel Adhesive Protein Chemistry , 2014, Advanced materials.

[161]  L. Curtiss,et al.  Computational studies of catechol and water interactions with titanium oxide nanoparticles. , 2003 .

[162]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[163]  Bruce P. Lee,et al.  Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein , 2016, Journal of polymer science. Part A, Polymer chemistry.

[164]  Bradley F. Chmelka,et al.  Tuning underwater adhesion with cation-π interactions. , 2017, Nature chemistry.

[165]  M. Reches,et al.  Revealing the role of catechol moieties in the interactions between peptides and inorganic surfaces. , 2016, Nanoscale.

[166]  Jinyoung Hwang,et al.  Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast t1- and T2-weighted magnetic resonance imaging. , 2010, Bioconjugate chemistry.

[167]  Lehui Lu,et al.  Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. , 2014, Chemical reviews.

[168]  Jingfeng Jiang,et al.  pH Responsive and Oxidation Resistant Wet Adhesive based on Reversible Catechol–Boronate Complexation , 2016, Chemistry of materials : a publication of the American Chemical Society.

[169]  Hakan Ceylan,et al.  Mussel Inspired Dynamic Cross‐Linking of Self‐Healing Peptide Nanofiber Network , 2013 .

[170]  Frank Caruso,et al.  Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces , 2017 .

[171]  Dusty R. Miller,et al.  pH-dependent cross-linking of catechols through oxidation via Fe3+ and potential implications for mussel adhesion. , 2014, RSC advances.

[172]  Jonathan J Wilker,et al.  Marine bioinorganic materials: mussels pumping iron. , 2010, Current opinion in chemical biology.

[173]  Hongbo Zeng,et al.  Nanomechanics of Poly(catecholamine) Coatings in Aqueous Solutions. , 2016, Angewandte Chemie.

[174]  Brian P. Frank,et al.  Adhesion of Mytilus edulis Foot Protein 1 on Silica: Ionic Effects on Biofouling , 2002, Biotechnology progress.

[175]  Bruce P. Lee,et al.  Biomechanical properties of Achilles tendon repair augmented with a bioadhesive-coated scaffold , 2011, Biomedical materials.

[176]  Youbing Mu,et al.  A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions. , 2015, Chemical communications.

[177]  C. Jérôme,et al.  Catechols as versatile platforms in polymer chemistry , 2013 .

[178]  M. Becker,et al.  Adhesion properties of catechol-based biodegradable amino acid-based poly(ester urea) copolymers inspired from mussel proteins. , 2015, Biomacromolecules.

[179]  D. Lin,et al.  Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. , 2008, Environmental science & technology.

[180]  Admir Masic,et al.  Adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH. , 2013, Biomacromolecules.

[181]  Youbing Mu,et al.  Humid Bonding with a Water-Soluble Adhesive Inspired by Mussels and Sandcastle Worms , 2015 .

[182]  S. Sornambikai,et al.  Selective covalent immobilization of catechol on activated carbon electrodes , 2010 .

[183]  E. Kramer,et al.  The deformation and adhesion of randomly rough and patterned surfaces. , 2006, The journal of physical chemistry. B.

[184]  R. Stewart,et al.  Multiphase adhesive coacervates inspired by the Sandcastle worm. , 2011, ACS applied materials & interfaces.

[185]  Bruce P. Lee,et al.  Effect of Nitro-Functionalization on the Cross-Linking and Bioadhesion of Biomimetic Adhesive Moiety , 2014, Biomacromolecules.

[186]  Zhan Chen,et al.  Interfacial structure of a DOPA-inspired adhesive polymer studied by sum frequency generation vibrational spectroscopy. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[187]  R. Haag,et al.  Mussel-inspired dendritic polymers as universal multifunctional coatings. , 2014, Angewandte Chemie.

[188]  T. L. Coombs,et al.  Mytilus byssal threads as an environmental marker for metals , 1981 .

[189]  M. Grätzel,et al.  Adsorbate-induced Modification of Surface Electronic Structure: Pyrocatechol Adsorption on the Anatase TiO2 (101) and Rutile TiO2 (110) Surfaces , 2012 .

[190]  F. Caruso,et al.  Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. , 2012, Biomacromolecules.