Fake news detection: A hybrid CNN-RNN based deep learning approach

[1]  P. Vigneswara Ilavarasan,et al.  Detection of Spammers in Twitter marketing: A Hybrid Approach Using Social Media Analytics and Bio Inspired Computing , 2017, Information Systems Frontiers.

[2]  Eunsol Choi,et al.  Truth of Varying Shades: Analyzing Language in Fake News and Political Fact-Checking , 2017, EMNLP.

[3]  Bo Zhao,et al.  A Survey on Truth Discovery , 2015, SKDD.

[4]  Dimitrios Kollias,et al.  Exploiting multi-CNN features in CNN-RNN based Dimensional Emotion Recognition on the OMG in-the-wild Dataset , 2019, ArXiv.

[5]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[6]  Frédéric Alexandre,et al.  Bio-inspired Analysis of Deep Learning on Not-So-Big Data Using Data-Prototypes , 2019, Front. Comput. Neurosci..

[7]  Manju Khari,et al.  A Deep Learning Model Based on Multi-Objective Particle Swarm Optimization for Scene Classification in Unmanned Aerial Vehicles , 2020, IEEE Access.

[8]  Sungyong Seo,et al.  CSI: A Hybrid Deep Model for Fake News Detection , 2017, CIKM.

[9]  Andreas Vlachos,et al.  Fact Checking: Task definition and dataset construction , 2014, LTCSS@ACL.

[10]  Heng Ji,et al.  Tweet, but verify: epistemic study of information verification on Twitter , 2013, Social Network Analysis and Mining.

[11]  JungHwan Yang,et al.  Political Astroturfing on Twitter: How to Coordinate a Disinformation Campaign , 2020, Political Communication.

[12]  Reza Zafarani,et al.  Fake News Early Detection , 2019, Digital Threats: Research and Practice.

[13]  Jacob Ratkiewicz,et al.  Truthy: mapping the spread of astroturf in microblog streams , 2010, WWW.

[14]  Arpan Kumar Kar,et al.  Bio inspired computing - A review of algorithms and scope of applications , 2016, Expert Syst. Appl..

[15]  Le Thanh Nguyen-Meidine,et al.  A comparison of CNN-based face and head detectors for real-time video surveillance applications , 2017, 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA).

[16]  Andreas Vlachos,et al.  Emergent: a novel data-set for stance classification , 2016, NAACL.

[17]  Fayez Gebali,et al.  A Novel Approach for Selecting Hybrid Features from Online News Textual Metadata for Fake News Detection , 2019, 3PGCIC.

[18]  Dinesh Kumar Vishwakarma,et al.  A comparative study on bio-inspired algorithms for sentiment analysis , 2020, Cluster Computing.

[19]  Anja Gruenheid,et al.  Investigating Rumor News Using Agreement-Aware Search , 2018, CIKM.

[20]  Arkaitz Zubiaga,et al.  SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours , 2017, *SEMEVAL.

[21]  Issa Traore,et al.  Detecting opinion spams and fake news using text classification , 2018, Secur. Priv..

[22]  Reema Aswani,et al.  Experience , 2019, Journal of Data and Information Quality.

[23]  Yurong Liu,et al.  A survey of deep neural network architectures and their applications , 2017, Neurocomputing.

[24]  Eric Gilbert,et al.  CREDBANK: A Large-Scale Social Media Corpus With Associated Credibility Annotations , 2015, ICWSM.

[25]  Ibrahim Bounhas,et al.  A Hybrid Approach for Fake News Detection in Twitter Based on User Features and Graph Embedding , 2020, ICDCIT.

[26]  Yongdong Zhang,et al.  News Verification by Exploiting Conflicting Social Viewpoints in Microblogs , 2016, AAAI.

[27]  Stefano Ceri,et al.  False News On Social Media: A Data-Driven Survey , 2019, SGMD.

[28]  Fred Morstatter,et al.  Misinformation in Social Media: Definition, Manipulation, and Detection , 2019, SKDD.

[29]  Wei Gao,et al.  Detecting Rumors from Microblogs with Recurrent Neural Networks , 2016, IJCAI.

[30]  Gyanendra K. Verma,et al.  Convolutional neural network: a review of models, methodologies and applications to object detection , 2019, Progress in Artificial Intelligence.

[31]  Wei Gao,et al.  Detect Rumors Using Time Series of Social Context Information on Microblogging Websites , 2015, CIKM.

[32]  Jure Leskovec,et al.  Disinformation on the Web: Impact, Characteristics, and Detection of Wikipedia Hoaxes , 2016, WWW.

[33]  Arkaitz Zubiaga,et al.  PHEME : computing veracity : the fourth challenge of big social data , 2014 .

[34]  Deepayan Bhowmik,et al.  Fake News Identification on Twitter with Hybrid CNN and RNN Models , 2018, SMSociety.

[35]  Xiaobin Zhang,et al.  A Combination of RNN and CNN for Attention-based Relation Classification , 2018 .

[36]  Chuan Yu,et al.  Trends in the diffusion of misinformation on social media , 2018, Research & Politics.

[37]  Sinan Aral,et al.  The spread of true and false news online , 2018, Science.

[38]  Fatima K. Abu Salem,et al.  FA-KES: A Fake News Dataset around the Syrian War , 2019, ICWSM.

[39]  Arkaitz Zubiaga,et al.  Detection and Resolution of Rumours in Social Media , 2017, ACM Comput. Surv..

[40]  Musheer Ahmad,et al.  Real-Time Sign Language Gesture (Word) Recognition from Video Sequences Using CNN and RNN , 2018 .

[41]  Arkaitz Zubiaga,et al.  Exploiting Context for Rumour Detection in Social Media , 2017, SocInfo.

[42]  Dinesh Kumar Vishwakarma,et al.  Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities , 2020, Expert Syst. Appl..

[43]  M. Mckee,et al.  Systematic Literature Review on the Spread of Health-related Misinformation on Social Media , 2019, Social Science & Medicine.

[44]  Li Zeng,et al.  #Unconfirmed: Classifying Rumor Stance in Crisis-Related Social Media Messages , 2016, ICWSM.

[45]  Cody Buntain,et al.  Automatically Identifying Fake News in Popular Twitter Threads , 2017, 2017 IEEE International Conference on Smart Cloud (SmartCloud).

[46]  Nabil Hmina,et al.  Deep Belief Network and Auto-Encoder for Face Classification , 2019, Int. J. Interact. Multim. Artif. Intell..