Optimizing at the ergodic edge

Using a simple, annealed model, some of the key features of the recently introduced extremal optimization heuristic are demonstrated. In particular, it is shown that the dynamics of local search possesses a generic critical point under the variation of its sole parameter, separating phases of too greedy (non-ergodic, jammed) and too random (ergodic) exploration. Comparison of various local search methods within this model suggests that the existence of the critical point is essential for the optimal performance of the heuristic.

[1]  Stefan Boettcher,et al.  Extremal Optimization for Graph Partitioning , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Leandro Nunes de Castro,et al.  Recent Developments In Biologically Inspired Computing , 2004 .

[3]  Dla Polski,et al.  EURO , 2004 .

[4]  Alex M. Andrew,et al.  Modern Heuristic Search Methods , 1998 .

[5]  A P Young,et al.  Nature of the spin glass state. , 2000, Physical review letters.

[6]  A K Hartmann Calculation of ground states of four-dimensional +/-J Ising spin glasses. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  S. Boettcher Extremal optimization for Sherrington-Kirkpatrick spin glasses , 2004, cond-mat/0407130.

[8]  Victor J. Rayward-Smith,et al.  Modern Heuristic Search Methods , 1996 .

[9]  Peter Salamon,et al.  Facts, Conjectures, and Improvements for Simulated Annealing , 1987 .

[10]  Stefan Boettcher,et al.  Comparing extremal and thermal explorations of energy landscapes , 2005 .

[11]  Elad Yom-Tov,et al.  Movement-related potentials during the performance of a motor task I: The effect of learning and force , 2001, Biological Cybernetics.

[12]  Stefan Boettcher,et al.  Extremal optimization at the phase transition of the three-coloring problem. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Stefan Boettcher,et al.  Jamming Model for the Extremal Optimization Heuristic , 2001, ArXiv.

[14]  A. Percus,et al.  Nature's Way of Optimizing , 1999, Artif. Intell..

[15]  A. Arenas,et al.  Community detection in complex networks using extremal optimization. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  Yutaka Okabe,et al.  A Comparison of Extremal Optimization with Flat-Histogram and Equal-Hit Dynamics for Finding Spin–Glass Ground States , 2002 .

[18]  H. Rieger,et al.  New Optimization Algorithms in Physics , 2004 .

[19]  S. Boettcher Numerical results for ground states of mean-field spin glasses at low connectivities , 2002, cond-mat/0208444.

[20]  Optimization and self-organized criticality in a magnetic system , 2003 .

[21]  T. Prellberg,et al.  Flat histogram version of the pruned and enriched Rosenbluth method. , 2004, Physical review letters.

[22]  O. C. Martin,et al.  RENORMALIZATION FOR DISCRETE OPTIMIZATION , 1999 .

[23]  Karl Heinz Hoffmann,et al.  Fitness threshold accepting over extremal optimization ranks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Faster Monte Carlo simulations at low temperatures. The waiting time method , 2001, cond-mat/0107475.

[25]  P. Grassberger,et al.  Testing a new Monte Carlo algorithm for protein folding , 1997, Proteins.

[26]  James P. Sethna,et al.  Multicanonical methods, molecular dynamics, and Monte Carlo methods: Comparison for Lennard-Jones glasses , 1998 .

[27]  S. Boettcher Extremal Optimization of Graph Partitioning at the Percolation Threshold , 1999, cond-mat/9901353.

[28]  Károly F. Pál,et al.  The ground state energy of the Edwards-Anderson Ising spin glass with a hybrid genetic algorithm , 1996 .

[29]  Tao Zhou,et al.  Continuous extremal optimization for Lennard-Jones clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[31]  G. Rinaldi,et al.  Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm , 1995 .

[32]  K. F. Pál The ground state of the cubic spin glass with short-range interactions of Gaussian distribution , 1996 .

[33]  Fabiano Luis de Sousa,et al.  Heat Pipe Design Through Generalized Extremal Optimization , 2004 .

[34]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[35]  Glassy dynamics of protein folding. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[37]  Mohamed Batouche,et al.  Combining Extremal Optimization With Singular Value Decomposition For Effective Point Matching , 2003, Int. J. Pattern Recognit. Artif. Intell..

[38]  R. Palmer,et al.  Ground States for Large Samples of Two-Dimensional Ising Spin Glasses , 1999 .

[39]  David Sherrington Landscape paradigms in physics and biology: Introduction and overview , 1996 .

[40]  R. Palmer,et al.  Models of hierarchically constrained dynamics for glassy relaxation , 1984 .

[41]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[42]  Ritort Glassiness in a Model without Energy Barriers. , 1995, Physical review letters.

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  H. Jaeger,et al.  Granular solids, liquids, and gases , 1996 .

[45]  Slow relaxation in granular compaction , 1996, cond-mat/9603150.

[46]  Masao Iwamatsu,et al.  Basin hopping with occasional jumping , 2004 .

[47]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[48]  A. Middleton,et al.  Improved extremal optimization for the Ising spin glass. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Pontus Svenson Extremal optimization for sensor report preprocessing , 2004, SPIE Defense + Commercial Sensing.

[50]  Karl Heinz Hoffmann,et al.  Best possible probability distribution over extremal optimization ranks , 2004 .

[51]  Richard G. Palmer,et al.  Magnetic properties of a model spin glass and the failure of linear response theory , 1981 .

[52]  Alexander K. Hartmann GROUND-STATE BEHAVIOR OF THE THREE-DIMENSIONAL J RANDOM-BOND ISING MODEL , 1999 .