A nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with poroelastic media
暂无分享,去创建一个
Ivan Yotov | Ilona Ambartsumyan | Vincent J. Ervin | I. Yotov | V. Ervin | Ilona Ambartsumyan | Truong Nguyen | Truong Nguyen | T. Nguyen | Truong Nguyen
[1] Annalisa Quaini,et al. Optimization-Based Decoupling Algorithms for a Fluid-Poroelastic System , 2016 .
[2] H. Langtangen,et al. Mixed Finite Elements , 2003 .
[3] Shuyu Sun,et al. Coupling nonlinear Stokes and Darcy flow using mortar finite elements , 2011 .
[4] R. Rogers,et al. An introduction to partial differential equations , 1993 .
[5] Marco Dressler,et al. Computational Rheology , 2002 .
[6] Ivan Yotov,et al. Dimensional model reduction for flow through fractures in poroelastic media , 2016 .
[7] Ivan Yotov,et al. Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach , 2014, 1403.5707.
[8] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[9] R. Bird. Dynamics of Polymeric Liquids , 1977 .
[10] M. Dauge. Elliptic boundary value problems on corner domains , 1988 .
[11] Huidong Yang,et al. Fluid-Structure Interaction: Modeling, Adaptive Discretisations and Solvers , 2017 .
[12] Shuyu Sun,et al. Coupled Generalized Nonlinear Stokes Flow with Flow through a Porous Medium , 2009, SIAM J. Numer. Anal..
[13] Jérôme Droniou,et al. A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes , 2015, Math. Comput..
[14] Ricardo G. Durán,et al. Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra , 2008, Math. Comput..
[15] Martin J Blunt,et al. Predictive network modeling of single-phase non-Newtonian flow in porous media. , 2003, Journal of colloid and interface science.
[16] Sergio Caucao,et al. A fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity , 2017, J. Num. Math..
[17] Giovanni P. Galdi,et al. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .
[18] Mary F. Wheeler,et al. Phase-field modeling of a fluid-driven fracture in a poroelastic medium , 2015, Computational Geosciences.
[19] D. Joseph,et al. Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.
[20] Graham F. Carey,et al. Numerical approximation of generalized Newtonian fluids using Powell–Sabin–Heindl elements: I. theoretical estimates , 2003 .
[21] R. Showalter. Poro-plastic filtration coupled to Stokes flow , 2005 .
[22] Mary F. Wheeler,et al. Phase-field modeling of proppant-filled fractures in a poroelastic medium , 2016 .
[23] M. Dauge. Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .
[24] Mary F. Wheeler,et al. A lubrication fracture model in a poro-elastic medium , 2015 .
[25] Ayçil Çesmelioglu,et al. Analysis of the coupled Navier–Stokes/Biot problem , 2017, 1702.08095.
[26] Ivan Yotov,et al. An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure , 2015 .
[27] I. Yotov,et al. Domain decomposition for coupled Stokes and Darcy flows , 2013 .
[28] R. E. Showalter,et al. Nonlinear Degenerate Evolution Equations in Mixed Formulation , 2010, SIAM J. Math. Anal..
[29] Alfio Quarteroni,et al. Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .
[30] Robert C. Armstrong,et al. Dynamics of Polymeric Liquids, Vols. 1 and 2 , 1978 .
[31] M. Biot. General Theory of Three‐Dimensional Consolidation , 1941 .
[32] Michel Fortin,et al. Mixed Finite Elements, Compatibility Conditions, and Applications , 2008 .
[33] Salim Meddahi,et al. A primal-mixed formulation for the strong coupling of quasi-Newtonian fluids with porous media , 2016, Adv. Comput. Math..
[34] E. Miglio,et al. Mathematical and numerical models for coupling surface and groundwater flows , 2002 .
[35] J. Málek. Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .
[36] Ivan Yotov,et al. A Lagrange multiplier method for a Stokes–Biot fluid–poroelastic structure interaction model , 2017, Numerische Mathematik.
[37] Rolf Rannacher,et al. Fundamental Trends in Fluid-Structure Interaction , 2010 .
[38] R. Showalter. Monotone operators in Banach space and nonlinear partial differential equations , 1996 .
[39] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[40] Adélia Sequeira,et al. A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries , 2010, J. Comput. Appl. Math..
[41] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[42] Daniele Boffi,et al. Analysis of Finite Element Approximation of Evolution Problems in Mixed Form , 2004, SIAM J. Numer. Anal..
[43] D. Sandri,et al. Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de carreau , 1993 .
[44] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[45] Ivan Yotov,et al. Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..
[46] G. Folland. Introduction to Partial Differential Equations , 1976 .
[47] Annalisa Quaini,et al. Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction , 2009, J. Comput. Phys..
[48] P. Saffman. On the Boundary Condition at the Surface of a Porous Medium , 1971 .
[49] P. M. J. Tardy,et al. Models for flow of non-Newtonian and complex fluids through porous media , 2002 .
[50] Béatrice Rivière,et al. Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .
[51] Christian Vergara,et al. Computational Comparison Between Newtonian and Non-Newtonian Blood Rheologies in Stenotic Vessels , 2018 .
[52] Ricardo G. Durán. Error analysis in $L^p \leqslant p \leqslant \infty $ , for mixed finite element methods for linear and quasi-linear elliptic problems , 1988 .