A nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with poroelastic media

We develop and analyze a model for the interaction of a quasi-Newtonian free fluid with a poroelastic medium. The flow in the fluid region is described by the nonlinear Stokes equations and in the poroelastic medium by the nonlinear quasi-static Biot model. Equilibrium and kinematic conditions are imposed on the interface. We establish existence and uniqueness of a solution to the weak formulation and its semidiscrete continuous-in-time finite element approximation. We present error analysis, complemented by numerical experiments.

[1]  Annalisa Quaini,et al.  Optimization-Based Decoupling Algorithms for a Fluid-Poroelastic System , 2016 .

[2]  H. Langtangen,et al.  Mixed Finite Elements , 2003 .

[3]  Shuyu Sun,et al.  Coupling nonlinear Stokes and Darcy flow using mortar finite elements , 2011 .

[4]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[5]  Marco Dressler,et al.  Computational Rheology , 2002 .

[6]  Ivan Yotov,et al.  Dimensional model reduction for flow through fractures in poroelastic media , 2016 .

[7]  Ivan Yotov,et al.  Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach , 2014, 1403.5707.

[8]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[9]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[10]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[11]  Huidong Yang,et al.  Fluid-Structure Interaction: Modeling, Adaptive Discretisations and Solvers , 2017 .

[12]  Shuyu Sun,et al.  Coupled Generalized Nonlinear Stokes Flow with Flow through a Porous Medium , 2009, SIAM J. Numer. Anal..

[13]  Jérôme Droniou,et al.  A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes , 2015, Math. Comput..

[14]  Ricardo G. Durán,et al.  Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra , 2008, Math. Comput..

[15]  Martin J Blunt,et al.  Predictive network modeling of single-phase non-Newtonian flow in porous media. , 2003, Journal of colloid and interface science.

[16]  Sergio Caucao,et al.  A fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity , 2017, J. Num. Math..

[17]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[18]  Mary F. Wheeler,et al.  Phase-field modeling of a fluid-driven fracture in a poroelastic medium , 2015, Computational Geosciences.

[19]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[20]  Graham F. Carey,et al.  Numerical approximation of generalized Newtonian fluids using Powell–Sabin–Heindl elements: I. theoretical estimates , 2003 .

[21]  R. Showalter Poro-plastic filtration coupled to Stokes flow , 2005 .

[22]  Mary F. Wheeler,et al.  Phase-field modeling of proppant-filled fractures in a poroelastic medium , 2016 .

[23]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[24]  Mary F. Wheeler,et al.  A lubrication fracture model in a poro-elastic medium , 2015 .

[25]  Ayçil Çesmelioglu,et al.  Analysis of the coupled Navier–Stokes/Biot problem , 2017, 1702.08095.

[26]  Ivan Yotov,et al.  An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure , 2015 .

[27]  I. Yotov,et al.  Domain decomposition for coupled Stokes and Darcy flows , 2013 .

[28]  R. E. Showalter,et al.  Nonlinear Degenerate Evolution Equations in Mixed Formulation , 2010, SIAM J. Math. Anal..

[29]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[30]  Robert C. Armstrong,et al.  Dynamics of Polymeric Liquids, Vols. 1 and 2 , 1978 .

[31]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[32]  Michel Fortin,et al.  Mixed Finite Elements, Compatibility Conditions, and Applications , 2008 .

[33]  Salim Meddahi,et al.  A primal-mixed formulation for the strong coupling of quasi-Newtonian fluids with porous media , 2016, Adv. Comput. Math..

[34]  E. Miglio,et al.  Mathematical and numerical models for coupling surface and groundwater flows , 2002 .

[35]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[36]  Ivan Yotov,et al.  A Lagrange multiplier method for a Stokes–Biot fluid–poroelastic structure interaction model , 2017, Numerische Mathematik.

[37]  Rolf Rannacher,et al.  Fundamental Trends in Fluid-Structure Interaction , 2010 .

[38]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[39]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[40]  Adélia Sequeira,et al.  A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries , 2010, J. Comput. Appl. Math..

[41]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[42]  Daniele Boffi,et al.  Analysis of Finite Element Approximation of Evolution Problems in Mixed Form , 2004, SIAM J. Numer. Anal..

[43]  D. Sandri,et al.  Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de carreau , 1993 .

[44]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[45]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[46]  G. Folland Introduction to Partial Differential Equations , 1976 .

[47]  Annalisa Quaini,et al.  Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction , 2009, J. Comput. Phys..

[48]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[49]  P. M. J. Tardy,et al.  Models for flow of non-Newtonian and complex fluids through porous media , 2002 .

[50]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[51]  Christian Vergara,et al.  Computational Comparison Between Newtonian and Non-Newtonian Blood Rheologies in Stenotic Vessels , 2018 .

[52]  Ricardo G. Durán Error analysis in $L^p \leqslant p \leqslant \infty $ , for mixed finite element methods for linear and quasi-linear elliptic problems , 1988 .