Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing.

Many information processing challenges are difficult to solve with traditional Turing or von Neumann approaches. Implementing unconventional computational methods is therefore essential and optics provides promising opportunities. Here we experimentally demonstrate optical information processing using a nonlinear optoelectronic oscillator subject to delayed feedback. We implement a neuro-inspired concept, called Reservoir Computing, proven to possess universal computational capabilities. We particularly exploit the transient response of a complex dynamical system to an input data stream. We employ spoken digit recognition and time series prediction tasks as benchmarks, achieving competitive processing figures of merit.

[1]  E. Voges,et al.  Dynamics of electrooptic bistable devices with delayed feedback , 1982 .

[2]  H. John Caulfield,et al.  Why future supercomputing requires optics , 2010 .

[3]  Rodney S. Tucker,et al.  The role of optics in computing , 2010 .

[4]  W. Maass,et al.  State-dependent computations: spatiotemporal processing in cortical networks , 2009, Nature Reviews Neuroscience.

[5]  D. Psaltis,et al.  Holography in artificial neural networks , 1990, Nature.

[6]  Laurent Larger,et al.  Nonlinear dynamics: Optoelectronic chaos , 2010, Nature.

[7]  J. O'Brien Optical Quantum Computing , 2007, Science.

[8]  Alan Miller,et al.  Non-linear optical effects in InSb with a c.w. CO laser , 1978 .

[9]  D. Miller,et al.  The role of optics in computing , 2010 .

[10]  Lijuan Cao,et al.  Support vector machines experts for time series forecasting , 2003, Neurocomputing.

[11]  Meucci,et al.  Two-dimensional representation of a delayed dynamical system. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  Gilles Laurent,et al.  Transient Dynamics for Neural Processing , 2008, Science.

[13]  Richard F. Lyon,et al.  A computational model of filtering, detection, and compression in the cochlea , 1982, ICASSP.

[14]  Benjamin Schrauwen,et al.  Parallel Reservoir Computing Using Optical Amplifiers , 2011, IEEE Transactions on Neural Networks.

[15]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[16]  Laurent Larger,et al.  Ikeda-based nonlinear delayed dynamics for application to secure optical transmission systems using chaos , 2004 .

[17]  L. Appeltant,et al.  Information processing using a single dynamical node as complex system , 2011, Nature communications.

[18]  Andreas S. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[19]  H. John,et al.  Why future supercomputing requires optics , 2010 .

[20]  Laurent Larger,et al.  Ikeda Hopf bifurcation revisited , 2004 .

[21]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[22]  M GUNTHER,et al.  The ethnological and medical significance of breast feeding. , 1955, Journal of tropical pediatrics.

[23]  Benjamin Schrauwen,et al.  Toward optical signal processing using photonic reservoir computing. , 2008, Optics express.

[24]  Eckehard Schöll,et al.  Broadband chaos generated by an optoelectronic oscillator. , 2009, Physical review letters.

[25]  Sudeshna Sinha,et al.  Introduction to focus issue: intrinsic and designed computation: information processing in dynamical systems--beyond the digital hegemony. , 2010, Chaos.

[26]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[27]  Eitan Abraham,et al.  Optical bistability and related devices , 1982 .

[28]  Peter Tiño,et al.  Minimum Complexity Echo State Network , 2011, IEEE Transactions on Neural Networks.

[29]  B. Schrauwen,et al.  Isolated word recognition with the Liquid State Machine: a case study , 2005, Inf. Process. Lett..

[30]  Benjamin Schrauwen,et al.  Optoelectronic Reservoir Computing , 2011, Scientific Reports.