Role of aerosol size distribution and source location in a three‐dimensional simulation of a Saharan dust episode tested against satellite‐derived optical thickness

An off-line global three-dimensional tracer model based on analyzed wind fields was augmented to simulate the atmospheric transport of mineral dust. The model describes the evolution of the aerosol size distribution and hence allows to compute aerosol number and mass concentrations. In this study we describe the parameterization of the sedimentation process and include a preliminary source formulation but exclude wet deposition. Validation of the model is done during a 16-day period in June-July 1988 with very scarce precipitation. It is based on a comparison of every model grid box with daily satellite-derived optical thickness observations of Saharan dust plumes over the North Atlantic and the Mediterranean. The model reproduces accurately the daily position of the dust plumes over the ocean, with the exception of Atlantic regions remote from the African coast. By systematic analysis of transport and aerosol components we show that the largest uncertainty in reproducing the position of the dust clouds is the correct localization of the source regions. The model simulation is also very sensitive to the inclusion of convection and to an accurate treatment of the sedimentation process. Only the combination of source activation, rapid transport of dust to higher altitudes by convective updraft and long-range transport allows the simulation of the dust plumes position. This study shows that a mineral dust transport model is only constrained if both the source strength and the aerosol size distribution are known. The satellite observation of optical thickness over the Mediterranean and assumptions about the size distribution indicate that the dust emission flux was of the order of 17×106 t for the 16-day period under investigation. The simulations suggest that a major aerosol mode initially around 2.5 μm with a standard deviation of 2.0 plays the dominant role in long-range transport of mineral dust.

[1]  I. Jankowiak,et al.  Long‐term daily monitoring of Saharan dust load over ocean using Meteosat ISCCP‐B2 data: 2. Accuracy of the method and validation using Sun photometer measurements , 1997 .

[2]  C. Genthon,et al.  Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere , 1992 .

[3]  M. Legrand Étude des aérosols sahariens au dessus de l'Afrique à l'aide du canal à 10 microns de Météosat : visualisation, interprétation et modélisation , 1990 .

[4]  Larry L. Stowe,et al.  Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product , 1997 .

[5]  W. Slinn,et al.  Predictions for particle deposition on natural waters , 1980 .

[6]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[7]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[8]  P. Deschamps,et al.  Description of a computer code to simulate the satellite signal in the solar spectrum : the 5S code , 1990 .

[9]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[10]  G. Forbes,et al.  African Dust Reaching Northwestern Europe: A Case Study to Verify Trajectory Calculations , 1986 .

[11]  G. d’Almeida,et al.  A model for Saharan dust transport , 1986 .

[12]  G. Russell,et al.  A New Finite-Differencing Scheme for the Tracer Transport Equation , 1981 .

[13]  E. Shettle,et al.  Optical and Radiative Properties of a Desert Aerosol Model , 1986 .

[14]  J. Lelieveld,et al.  Role of mineral aerosol as a reactive surface in the global troposphere , 1996 .

[15]  A. J. Watson,et al.  Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean , 1994, Nature.

[16]  Martin Heimann,et al.  The global atmospheric tracer model TM3 , 1995 .

[17]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[18]  Sylvie Joussaume,et al.  Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model , 1990 .

[19]  K. Shine Radiative Forcing of Climate Change , 2000 .

[20]  Michael Garstang,et al.  Saharan dust in the Amazon Basin , 1992 .

[21]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[22]  Toby N. Carlson,et al.  A case study of mobilization and transport of Saharan dust , 1988 .

[23]  L. Schütz,et al.  LONG RANGE TRANSPORT OF DESERT DUST WITH SPECIAL EMPHASIS ON THE SAHARA * , 1980 .

[24]  C. Moulin,et al.  Long term (1983-1994) calibration of the Meteosat solar (VIS) channel using desert and ocean targets , 1996 .

[25]  G. Bergametti,et al.  Atmospheric input of trace metals to the western Mediterranean: uncertainties in modelling dry deposition from cascade impactor data , 1988 .

[26]  Slobodan Nickovic,et al.  A Model for Long-Range Transport of Desert Dust , 1996 .

[27]  Nick Middleton,et al.  The changing frequency of dust storms through time , 1992 .

[28]  M. Garstang,et al.  Temporal and spatial characteristics of Saharan dust outbreaks , 1996 .

[29]  François Dulac,et al.  Long‐term daily monitoring of Saharan dust load over ocean using Meteosat ISCCP‐B2 data: 1. Methodology and preliminary results for 1983–1994 in the Mediterranean , 1997 .

[30]  Michel Ramonet Variabilité du CO2 atmosphérique en régions australes : comparaison modèle / mesures , 1994 .

[31]  M. Andreae Raising dust in the greenhouse , 1996, Nature.

[32]  D. Tanré,et al.  Assessment of the African airborne dust mass over the western Mediterranean Sea using Meteosat data , 1992 .

[33]  N. Middleton Effect of drought on dust production in the Sahel , 1985, Nature.

[34]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[35]  Didier Tanré,et al.  Satellite Climatology of Saharan Dust Outbreaks: Method and Preliminary Results , 1992 .

[36]  A. Lacis,et al.  The influence on climate forcing of mineral aerosols from disturbed soils , 1996, Nature.

[37]  L. Friberg [Air pollution]. , 1984, Svenska lakartidningen.

[38]  C. Moulin,et al.  Quantitative Remote Sensing of African Dust Transport to the Mediterranean , 1996 .

[39]  G. d’Almeida,et al.  On the variability of desert aerosol radiative characteristics , 1987 .

[40]  Modélisation de la production d'aérosols désertiques en régions arides et semi-arides : développement et validation d'un code de calcul adapté au transport à grande échelle , 1995 .

[41]  Sergey M. Sakerin,et al.  Validation of the NOAA/NESDIS satellite aerosol product over the North Atlantic in 1989 , 1995 .