A correct and complete algorithm for the generation of mechanical assembly sequences

The authors present an algorithm for the generation of mechanical assembly sequences and a proof of its correctness and completeness. The algorithm uses a relational model which describes the geometry of the assembly and the attachments that bind one part to another. The problem of generating the assembly sequences is transformed into the problem of generating disassembly sequences, in which the disassembly tasks are the reverse of feasible assembly tasks. This transformation leads to a decomposition approach in which the problem of disassembling one assembly is decomposed into distinct subproblems, each involving the disassembly of one subassembly. It is assumed that at each assembly task exactly two subassemblies are mated and that all contacts between the parts in the two subassemblies are established. The algorithm yields an AND/OR graph representation of assembly sequences. The correctness of the algorithm is based on the assumption that it is always possible to decide correctly whether two subassemblies can be joined based on geometrical and physical criteria. An approach to compute this decision is given, and bounds for the amount of computation required are presented.<<ETX>>