RATES OF FITNESS DECLINE AND REBOUND SUGGEST PERVASIVE EPISTASIS

Unraveling the factors that determine the rate of adaptation is a major question in evolutionary biology. One key parameter is the effect of a new mutation on fitness, which invariably depends on the environment and genetic background. The fate of a mutation also depends on population size, which determines the amount of drift it will experience. Here, we manipulate both population size and genotype composition and follow adaptation of 23 distinct Escherichia coli genotypes. These have previously accumulated mutations under intense genetic drift and encompass a substantial fitness variation. A simple rule is uncovered: the net fitness change is negatively correlated with the fitness of the genotype in which new mutations appear—a signature of epistasis. We find that Fisher's geometrical model can account for the observed patterns of fitness change and infer the parameters of this model that best fit the data, using Approximate Bayesian Computation. We estimate a genomic mutation rate of 0.01 per generation for fitness altering mutations, albeit with a large confidence interval, a mean fitness effect of mutations of −0.01, and an effective number of traits nine in mutS− E. coli. This framework can be extended to confront a broader range of models with data and test different classes of fitness landscape models.

[1]  I. Gordo,et al.  Evolution of clonal populations approaching a fitness peak , 2013, Biology Letters.

[2]  A. Sousa,et al.  ANTIBIOTIC RESISTANCE AND STRESS IN THE LIGHT OF FISHER'S MODEL , 2012, Evolution; international journal of organic evolution.

[3]  C. Zeyl,et al.  PREZYGOTIC ISOLATION BETWEEN SACCHAROMYCES CEREVISIAE AND SACCHAROMYCES PARADOXUS THROUGH DIFFERENCES IN MATING SPEED AND GERMINATION TIMING , 2012, Evolution; international journal of organic evolution.

[4]  Craig R. Miller,et al.  Stickbreaking: A Novel Fitness Landscape Model That Harbors Epistasis and Is Consistent with Commonly Observed Patterns of Adaptive Evolution , 2012, Genetics.

[5]  A. Sousa,et al.  Fitness Effects of Mutations in Bacteria , 2012, Journal of Molecular Microbiology and Biotechnology.

[6]  S. Elena,et al.  The causes of epistasis , 2011, Proceedings of the Royal Society B: Biological Sciences.

[7]  A. Sousa,et al.  Cost of Antibiotic Resistance and the Geometry of Adaptation , 2011, Molecular biology and evolution.

[8]  R. Kassen,et al.  Cost of Adaptation and Fitness Effects of Beneficial Mutations in Pseudomonas fluorescens , 2011, Genetics.

[9]  Danna R. Gifford,et al.  THE LENGTH OF ADAPTIVE WALKS IS INSENSITIVE TO STARTING FITNESS IN ASPERGILLUS NIDULANS , 2011, Evolution; international journal of organic evolution.

[10]  Christian P Robert,et al.  Lack of confidence in approximate Bayesian computation model choice , 2011, Proceedings of the National Academy of Sciences.

[11]  Richard E. Lenski,et al.  Mutation Rate Inferred From Synonymous Substitutions in a Long-Term Evolution Experiment With Escherichia coli , 2011, G3: Genes | Genomes | Genetics.

[12]  Katalin Csill'ery,et al.  abc: an R package for approximate Bayesian computation (ABC) , 2011, 1106.2793.

[13]  R. Lenski,et al.  Negative Epistasis Between Beneficial Mutations in an Evolving Bacterial Population , 2011, Science.

[14]  Nigel F. Delaney,et al.  Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation , 2011, Science.

[15]  N. Galtier,et al.  COMPLEXITY, PLEIOTROPY, AND THE FITNESS EFFECT OF MUTATIONS , 2011, Evolution; international journal of organic evolution.

[16]  Craig R. Miller,et al.  Epistasis between Beneficial Mutations and the Phenotype-to-Fitness Map for a ssDNA Virus , 2011, PLoS genetics.

[17]  Luis-Miguel Chevin,et al.  On measuring selection in experimental evolution , 2010, Biology Letters.

[18]  Alex R. Hall,et al.  The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts , 2010, Nature Reviews Genetics.

[19]  I. Gordo,et al.  Rate and effects of spontaneous mutations that affect fitness in mutator Escherichia coli , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[20]  D. Halligan,et al.  Spontaneous Mutation Accumulation Studies in Evolutionary Genetics , 2009 .

[21]  J. Hermisson,et al.  The Genetic Basis of Phenotypic Adaptation II: The Distribution of Adaptive Substitutions in the Moving Optimum Model , 2009, Genetics.

[22]  Danna R. Gifford,et al.  The Properties of Adaptive Walks in Evolving Populations of Fungus , 2009, PLoS biology.

[23]  A. Sousa,et al.  Positive Epistasis Drives the Acquisition of Multidrug Resistance , 2009, PLoS genetics.

[24]  Olivier Tenaillon,et al.  The Evolution of Epistasis and Its Links With Genetic Robustness, Complexity and Drift in a Phenotypic Model of Adaptation , 2009, Genetics.

[25]  R. MacLean,et al.  The cost of multiple drug resistance in Pseudomonas aeruginosa , 2009, Journal of evolutionary biology.

[26]  M. Lässig,et al.  From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. , 2009, Trends in genetics : TIG.

[27]  Martin T. Ferris,et al.  Beneficial Fitness Effects Are Not Exponential for Two Viruses , 2008, Journal of Molecular Evolution.

[28]  T. Lenormand,et al.  The Distribution of Beneficial and Fixed Mutation Fitness Effects Close to an Optimum , 2008, Genetics.

[29]  A. Perelson,et al.  Complete genetic linkage can subvert natural selection , 2007, Proceedings of the National Academy of Sciences.

[30]  L. Chao,et al.  Understanding the Evolutionary Fate of Finite Populations: The Dynamics of Mutational Effects , 2007, PLoS biology.

[31]  Thomas Lenormand,et al.  Distributions of epistasis in microbes fit predictions from a fitness landscape model , 2007, Nature Genetics.

[32]  Olivier Tenaillon,et al.  Quantifying Organismal Complexity using a Population Genetic Approach , 2007, PloS one.

[33]  T. Lenormand,et al.  THE FITNESS EFFECT OF MUTATIONS ACROSS ENVIRONMENTS: A SURVEY IN LIGHT OF FITNESS LANDSCAPE MODELS , 2006, Evolution; international journal of organic evolution.

[34]  Rafael Sanjuán,et al.  Epistasis correlates to genomic complexity , 2006, Proceedings of the National Academy of Sciences.

[35]  F. Moore,et al.  Tempo and constraint of adaptive evolution in Escherichia coli (Enterobacteriaceae, Enterobacteriales) , 2006 .

[36]  C. Bradshaw,et al.  Strength of evidence for density dependence in abundance time series of 1198 species. , 2006, Ecology.

[37]  D. Hartl,et al.  An Equivalence Principle for the Incorporation of Favorable Mutations in Asexual Populations , 2006, Science.

[38]  J. Welch,et al.  Fisher’s Microscope and Haldane’s Ellipse , 2005, The American Naturalist.

[39]  L. Chao,et al.  The Coupon Collector and the Suppressor Mutation , 2005, Genetics.

[40]  R. Watson,et al.  PERSPECTIVE: SIGN EPISTASIS AND GENETIC COSTRAINT ON EVOLUTIONARY TRAJECTORIES , 2005, Evolution; international journal of organic evolution.

[41]  I. Gordo,et al.  Nonequilibrium model for estimating parameters of deleterious mutations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  I. Gordo,et al.  ADAPTIVE EVOLUTION OF ASEXUAL POPULATIONS UNDER MULLER'S RATCHET , 2004, Evolution; international journal of organic evolution.

[43]  P. Keightley Comparing Analysis Methods for Mutation-Accumulation Data , 2004, Genetics.

[44]  M. Lynch,et al.  RAPID FITNESS RECOVERY IN MUTATIONALLY DEGRADED LINES OF CAENORHABDITIS ELEGANS , 2003, Evolution; international journal of organic evolution.

[45]  Ivan Saika-Voivod,et al.  Evaluating the impact of population bottlenecks in experimental evolution. , 2002, Genetics.

[46]  D. Andersson,et al.  Biological cost and compensatory evolution in fusidic acid‐resistant Staphylococcus aureus , 2001, Molecular microbiology.

[47]  Art Poon,et al.  COMPENSATING FOR OUR LOAD OF MUTATIONS: FREEZING THE MELTDOWN OF SMALL POPULATIONS , 2000, Evolution; international journal of organic evolution.

[48]  T. Bataillon Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations? , 2000, Heredity.

[49]  B. Levin,et al.  Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. , 2000, Genetics.

[50]  P. Keightley,et al.  Perspectives Anecdotal , Historical and Critical Commentaries on Genetics , 1999 .

[51]  A. D. Peters,et al.  High frequency of cryptic deleterious mutations in Caenorhabditis elegans. , 1999, Science.

[52]  B. Levin,et al.  Adaptation to the fitness costs of antibiotic resistance in Escherichia coli , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[53]  T Kibota,et al.  Estimate of the genomic mutation rate deleterious to overall fitness in E. coli , 1996 .

[54]  Michael Lynch,et al.  Estimate of the genomic mutation rate deleterious to overall fitness in E. coll , 1996, Nature.

[55]  N. Barton Linkage and the limits to natural selection. , 1995, Genetics.

[56]  B. Charlesworth,et al.  The effect of deleterious mutations on neutral molecular variation. , 1993, Genetics.

[57]  R. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations , 1991, The American Naturalist.

[58]  J. Drake A constant rate of spontaneous mutation in DNA-based microbes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[59]  A. Kondrashov Deleterious mutations and the evolution of sexual reproduction , 1988, Nature.

[60]  J. Gillespie MOLECULAR EVOLUTION OVER THE MUTATIONAL LANDSCAPE , 1984, Evolution; international journal of organic evolution.

[61]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[62]  T MUKAI,et al.  THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. SPONTANEOUS MUTATION RATE OF POLYGENES CONTROLLING VIABILITY. , 1964, Genetics.

[63]  A. Bateman THE VIABILITY OF NEAR-NORMAL IRRADIATED CHROMOSOMES , 1959 .

[64]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[65]  Mandy J. Haldane,et al.  A Mathematical Theory of Natural and Artificial Selection, Part V: Selection and Mutation , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[66]  R. Lenski,et al.  The fate of competing beneficial mutations in an asexual population , 2004, Genetica.