Multidimensional scaling of diffuse gliomas: application to the 2016 World Health Organization classification system with prognostically relevant molecular subtype discovery

[1]  Allison P. Heath,et al.  Toward a Shared Vision for Cancer Genomic Data. , 2016, The New England journal of medicine.

[2]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[3]  Promita Bose,et al.  Integrated Genomics for Pinpointing Survival Loci within Arm-Level Somatic Copy Number Alterations. , 2016, Cancer cell.

[4]  L. Zhao,et al.  Big data visualization identifies the multidimensional molecular landscape of human gliomas , 2016, Proceedings of the National Academy of Sciences.

[5]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[6]  A. Lazar,et al.  Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression , 2016, Scientific Reports.

[7]  William D. Dunn,et al.  Farewell to GBM-O: Genomic and transcriptomic profiling of glioblastoma with oligodendroglioma component reveals distinct molecular subgroups , 2016, Acta neuropathologica communications.

[8]  P. Decker,et al.  IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas , 2015, Oncotarget.

[9]  Steven J. M. Jones,et al.  Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. , 2015, The New England journal of medicine.

[10]  Alexander R. Pico,et al.  Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. , 2015, The New England journal of medicine.

[11]  Pieter Wesseling,et al.  IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO , 2015, Acta Neuropathologica.

[12]  David T. W. Jones,et al.  Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain , 2015, Acta Neuropathologica.

[13]  Gabriele Schackert,et al.  Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups , 2015, Acta Neuropathologica.

[14]  K. Aldape,et al.  IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II–III diffuse gliomas , 2015, Acta Neuropathologica.

[15]  D. Louis,et al.  Letter in Response to David N. Louis et al, International Society of Neuropathology‐Haarlem Consensus Guidelines for Nervous System Tumor Classification and Grading, Brain Pathology, doi: 10.1111/bpa.12171 , 2014, Brain pathology.

[16]  Pieter Wesseling,et al.  International Society of Neuropathology‐Haarlem Consensus Guidelines for Nervous System Tumor Classification and Grading , 2014, Brain pathology.

[17]  David T. W. Jones,et al.  Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma , 2014, Acta Neuropathologica.

[18]  Betty Y. S. Kim,et al.  Diagnostic discrepancies in malignant astrocytoma due to limited small pathological tumor sample can be overcome by IDH1 testing , 2014, Journal of Neuro-Oncology.

[19]  G. Reifenberger,et al.  Long-Term Survival in Primary Glioblastoma With Versus Without Isocitrate Dehydrogenase Mutations , 2013, Clinical Cancer Research.

[20]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[21]  Martin J. Bent,et al.  Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective , 2010, Acta Neuropathologica.

[22]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[23]  W. Vandertop,et al.  The prognostic IDH1R132 mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma , 2010, Acta Neuropathologica.

[24]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[25]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[26]  N. Ringertz Grading of gliomas. , 2009 .

[27]  B. Scheithauer,et al.  The 2007 WHO Classification of Tumours of the Central Nervous System , 2007, Acta Neuropathologica.

[28]  C. Miller,et al.  Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[29]  D. Brat,et al.  Analysis of 1p, 19q, 9p, and 10q as prognostic markers for high-grade astrocytomas using fluorescence in situ hybridization on tissue microarrays from Radiation Therapy Oncology Group trials. , 2004, Neuro-oncology.

[30]  B. Scheithauer,et al.  Clinical Utility of Fluorescence In Situ Hybridization (FISH) in Morphologically Ambiguous Gliomas with Hybrid Oligodendroglial/Astrocytic Features , 2003, Journal of neuropathology and experimental neurology.

[31]  B. Scheithauer,et al.  Oligodendrogliomas: Reproducibility and Prognostic Value of Histologic Diagnosis and Grading , 2001, Journal of neuropathology and experimental neurology.

[32]  G. Barger,et al.  Discrepancies in diagnoses of neuroepithelial neoplasms , 2000, Cancer.

[33]  B. Scheithauer,et al.  Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[34]  B. Scheithauer,et al.  Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype , 1999, Oncogene.

[35]  D K Pearl,et al.  Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas , 1997, Cancer.

[36]  E G Stopa,et al.  Observer reliability in histological grading of astrocytoma stereotactic biopsies. , 1996, Journal of neurosurgery.

[37]  R. Wellenreuther,et al.  Loci associated with malignant progression in astrocytomas: a candidate on chromosome 19q. , 1994, Cancer research.

[38]  P. Kelly,et al.  Grading of astrocytomas: A simple and reproducible method , 1988, Cancer.

[39]  P. Bailey,et al.  A classification of the tumors of the glioma group on a histogenetic basis with a correlated study of prognosis , 1970 .

[40]  R F MABON,et al.  A simplified classification of the gliomas. , 1949, Proceedings of the staff meetings. Mayo Clinic.

[41]  H. Scherer A CRITICAL REVIEW , 1940, Journal of neurology and psychiatry.

[42]  D. J. Mackenzie A Classification of the Tumours of the Glioma Group on a Histogenetic Basis With a Correlated Study of Prognosis , 1926 .

[43]  David T. W. Jones,et al.  ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma , 2014, Acta Neuropathologica.

[44]  M. Rosenblum,et al.  Mixed glioma with molecular features of composite oligodendroglioma and astrocytoma: a true “oligoastrocytoma”? , 2014, Acta Neuropathologica.

[45]  Amy E. Hawkins,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2009 .

[46]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[47]  P. Bailey,et al.  Microchemical Color Reactions as an Aid to the Identification and Classification of Brain Tumors. , 1925, Proceedings of the National Academy of Sciences of the United States of America.