Uncovering delayed patterns in noisy and irregularly sampled time series: An astronomy application

We study the problem of estimating the time delay between two signals representing delayed, irregularly sampled and noisy versions of the same underlying pattern. We propose and demonstrate an evolutionary algorithm for the (hyper)parameter estimation of a kernel-based technique in the context of an astronomical problem, namely estimating the time delay between two gravitationally lensed signals from a distant quasar. Mixed types (integer and real) are used to represent variables within the evolutionary algorithm. We test the algorithm on several artificial data sets, and also on real astronomical observations of quasar Q0957+561. By carrying out a statistical analysis of the results we present a detailed comparison of our method with the most popular methods for time delay estimation in astrophysics. Our method yields more accurate and more stable time delay estimates. Our methodology can be readily applied to current state-of-the-art optical monitoring data in astronomy, but can also be applied in other disciplines involving similar time series data.

[1]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[2]  Deborah B. Haarsma,et al.  The Radio Wavelength Time Delay of Gravitational Lens 0957+561 , 1999 .

[3]  Hans-Georg Beyer,et al.  A general noise model and its effects on evolution strategy performance , 2006, IEEE Transactions on Evolutionary Computation.

[4]  William H. Press,et al.  The Time Delay of Gravitational Lens 0957+561. I. Methodology and Analysis of Optical Photometric Data , 1992 .

[5]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[6]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[7]  M. Oguri Gravitational Lens Time Delays: A Statistical Assessment of Lens Model Dependences and Implications for the Global Hubble Constant , 2006, astro-ph/0609694.

[8]  Peter Tiño,et al.  How accurate are the time delay estimates in gravitational lensing? , 2006, ArXiv.

[9]  J. Pelt,et al.  The light curve and the time delay of QSO 0957+561. , 1995, astro-ph/9501036.

[10]  Per Kristian Lehre,et al.  On the Effect of Populations in Evolutionary Multi-Objective Optimisation , 2006, Evolutionary Computation.

[11]  B. Pindor Discovering Gravitational Lenses through Measurements of Their Time Delays , 2005, astro-ph/0501518.

[12]  Christine A. Shoemaker,et al.  Local function approximation in evolutionary algorithms for the optimization of costly functions , 2004, IEEE Transactions on Evolutionary Computation.

[13]  Carlos M. Fonseca,et al.  GENETIC ALGORITHM TOOLS FOR CONTROL SYSTEMS ENGINEERING , 1994 .

[14]  Pierre Magain,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. VII. Time delays and the Hubble con , 2008, 0803.4015.

[15]  D. A. Preece,et al.  An introduction to the statistical analysis of data , 1979 .

[16]  J. Wambsganss,et al.  The Rewards of Patience: An 822 Day Time Delay in the Gravitational Lens SDSS J1004+4112 , 2007, 0710.1634.

[17]  W. Press,et al.  The time delay of gravitational lens 0957+561. II: Analysis of radio data and combined optical-radio analysis , 1992 .

[18]  D. Walsh,et al.  0957 + 561 A, B: twin quasistellar objects or gravitational lens? , 1979, Nature.

[19]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[20]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[21]  E. Ziegel Modern Mathematical Statistics , 1989 .

[22]  M. Bartelmann Gravitational lensing , 2010, 1010.3829.

[23]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[24]  School of Physics,et al.  COSMOGRAIL: The COSmological MOnitoring of GRAvItational Lenses - I. How to sample the light curves of gravitationally lensed quasars to measure accurate time delays , 2005 .

[25]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[26]  O. Wucknitz Gravitational Lensing , 2007, Large-Scale Peculiar Motions.

[27]  J. Pelt,et al.  Time delay controversy on QSO 0957+561 not yet decided , 1994 .

[28]  Peter Tiño,et al.  A Kernel-Based Approach to Estimating Phase Shifts Between Irregularly Sampled Time Series: An Application to Gravitational Lenses , 2006, ECML.

[29]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[30]  Markus Harva,et al.  Bayesian Estimation of Time Delays Between Unevenly Sampled Signals , 2008, 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing.

[31]  F. Pijpers The determination of time delays as an inverse problem - the case of the double quasar 0957+561 , 1997 .

[32]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[33]  D. Long,et al.  A Robust Determination of the Time Delay in 0957+561A, B and a Measurement of the Global Value of Hubble's Constant , 1996, astro-ph/9610162.

[34]  P. Magain,et al.  A novel approach for extracting time-delays from lightcurves of lensed quasar images , 2001, astro-ph/0110668.

[35]  Pat Langley,et al.  Learning Process Models with Missing Data , 2006, ECML.

[36]  S. Refsdal,et al.  On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect , 1966 .

[37]  Boonserm Kijsirikul,et al.  Evolutionary strategies for multi-scale radial basis function kernels in support vector machines , 2005, GECCO '05.

[38]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses , 2004, Proceedings of the International Astronomical Union.

[39]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[40]  P. Schechter The Hubble Constant from Gravitational Lens Time Delays , 2004, Proceedings of the International Astronomical Union.

[41]  Jürgen Branke,et al.  Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation , 2006, IEEE Transactions on Evolutionary Computation.

[42]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[43]  Jonathan E. Rowe,et al.  An Evolution Strategy Using a Continuous Version of the Gray-Code Neighbourhood Distribution , 2004, GECCO.

[44]  J. Hjorth,et al.  ESTIMATION OF MULTIPLE TIME DELAYS IN COMPLEX GRAVITATIONAL LENS SYSTEMS , 1998 .

[45]  Ki Won Lee,et al.  Around-the-Clock Observations of the Q0957+561A,B Gravitationally Lensed Quasar. II. Results for the Second Observing Season , 2003 .

[46]  Yong Lu,et al.  A robust stochastic genetic algorithm (StGA) for global numerical optimization , 2004, IEEE Transactions on Evolutionary Computation.

[47]  J. Ovaldsen,et al.  New aperture photometry of QSO 0957+561; application to time delay and microlensing , 2003, astro-ph/0308397.

[48]  Thomas Bäck,et al.  Evolutionary Algorithms: The Role of Mutation and Recombination , 2000 .

[49]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[50]  Michael G. Madden,et al.  The Genetic Kernel Support Vector Machine: Description and Evaluation , 2005, Artificial Intelligence Review.

[51]  Volker Nissen,et al.  Evolutionary Algorithms in Management Applications , 1995 .

[52]  Jin-Kao Hao,et al.  A Hybrid GA/SVM Approach for Gene Selection and Classification of Microarray Data , 2006, EvoWorkshops.

[53]  W. Jason Owen,et al.  Statistical Data Analysis , 2000, Technometrics.

[54]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[55]  Neta A. Bahcall,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. II. STATISTICAL LENS SAMPLE FROM THE THIRD DATA RELEASE , 2007, 0708.0828.

[56]  David E. Goldberg,et al.  Efficient Parallel Genetic Algorithms: Theory and Practice , 2000 .