The distribution of McKay's approximation for the coefficient of variation

McKay's chi-square approximation for the coefficient of variation is type II noncentral beta distributed and asymptotically normal with mean n-1 and variance smaller than 2(n-1).

[1]  Mark G. Vangel,et al.  Confidence Intervals for a Normal Coefficient of Variation , 1996 .

[2]  Donald B. Owen,et al.  Survey of Properties and Applications of the Noncentral t-Distribution , 1968 .

[3]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1974 .

[4]  W. G. Warren On the adequacy of the chi-squared approximation for the coefficient of variation , 1982 .

[5]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[6]  A. T. McKay,et al.  Distribution of the Coefficient of Variation and the Extended “T” Distribution , 1932 .

[7]  H. Frick Algorithm AS R84: A Remark on Algorithm AS 226: Computing Non-Central Beta Probabilities , 1990 .

[8]  E. C. Fieller A Numerical Test of the Adequacy of A. T. Mckay's Approximation , 1932 .

[9]  B. M. Bennett On an Approximate Test for Homogeneity of Coefficients of Variation , 1976 .

[10]  G. Umphrey A comment on mckay's approximation for the coefficient of variation , 1983 .

[11]  Russell V. Lenth,et al.  Cumulative Distribution Function of the Noncentral T Distribution , 1989 .

[12]  Russell V. Lenth,et al.  Computing noncentral beta probabilities , 1987 .

[13]  Boris Iglewicz,et al.  Comparisons of Approximations to the Percentage Points of the Sample Coeffcient of Variation , 1970 .

[14]  E. S. Pearson Comparison of A. T. Mckay's Approximation with Experimental Sampling Results , 1932 .

[15]  R. Chattamvelli A Note on the Noncentral Beta Distribution Function , 1995 .