TM2B3 monolayers: Intrinsic anti-ferromagnetism and Dirac nodal line semimetal

Searching for two-dimensional materials combining both magnetic order and topological order is of great significance for quantum devices and spintronic devices. Here, a class of two-dimensional transition metal borides, TM2B3 (TM = Ti–Ni), with high stability and stable antiferromagnetic (AFM) orders was predicted by using the first-principles method. The result shows that they possess large magnetic anisotropy energy and high critical temperature. Interestingly, Mn2B3 monolayer is confirmed to be AFM Dirac node line semimetal with several Dirac points near the Fermi level. Detailed analysis of the irreducible representations shows that the nodal lines are protected by the horizontal mirror symmetry Mz. Our findings provide an excellent platform for exploring topological and magnetic materials ready for the next generation of spintronic devices.

[1]  Yugui Yao,et al.  Weyl Monoloop Semi-Half-Metal and Tunable Anomalous Hall Effect. , 2021, Nano letters.

[2]  T. Song,et al.  MnNBr Monolayer: A High‐Temperature Ferromagnetic Half‐Metal with Type‐II Weyl Fermions , 2021, physica status solidi (RRL) – Rapid Research Letters.

[3]  Xiaoming Zhang,et al.  Two-dimensional Weyl semimetal with coexisting fully spin-polarized type-I and type-II Weyl points , 2021 .

[4]  F. Peeters,et al.  Monolayer 1T-LaN2: Dirac spin-gapless semiconductor of p-state and Chern insulator with a high Chern number , 2020 .

[5]  Xiaoming Zhang,et al.  Weyl Fermions in VI3 Monolayer , 2020, Frontiers in Chemistry.

[6]  Guodong Liu,et al.  Ternary compound HfCuP: An excellent Weyl semimetal with the coexistence of type-I and type-II Weyl nodes , 2020, Journal of advanced research.

[7]  Xiaoming Zhang,et al.  Crystal Structures, Electronic Structures, and Topological Signatures in Equiatomic TT′X Compounds (T = Sc, Zr, Hf; T′ = Co, Pt, Pd, Ir, Rh; X = Al, Ga, Sn) , 2020 .

[8]  Bin Xi,et al.  Antiferromagnetic Semimetal in Ti-Intercalated Borophene Heterobilayer , 2020 .

[9]  S. Pennycook,et al.  Phase-controllable growth of ultrathin 2D magnetic FeTe crystals , 2019, Nature Communications.

[10]  H. Akbarzadeh,et al.  ESpinS: A program for classical Monte-Carlo simulations of spin systems , 2019, Computational Materials Science.

[11]  Yong Xu,et al.  High-Chern-number and high-temperature quantum Hall effect without Landau levels , 2019, National science review.

[12]  Cheol-Hwan Park,et al.  Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3 , 2019, Nature Communications.

[13]  Yanchun Zhou,et al.  First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2 , 2018, Journal of Materials Science & Technology.

[14]  R. E. Schaak,et al.  Topochemical Deintercalation of Al from MoAlB: Stepwise Etching Pathway, Layered Intergrowth Structures, and Two-Dimensional MBene. , 2018, Journal of the American Chemical Society.

[15]  Yanyu Chen,et al.  Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties , 2018 .

[16]  H. Zeng,et al.  Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator. , 2017, Nano letters.

[17]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[18]  Menghao Wu High-temperature intrinsic quantum anomalous Hall effect in rare Earth monohalide , 2017 .

[19]  Cheng-Cheng Liu,et al.  Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si , 2016, Nature Communications.

[20]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[21]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[22]  Shengbai Zhang,et al.  Nanostructured Carbon Allotropes with Weyl-like Loops and Points. , 2015, Nano letters.

[23]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[24]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[25]  W. Luo,et al.  Room temperature quantum spin Hall insulators with a buckled square lattice. , 2015, Nano letters.

[26]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[27]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[28]  Haijun Zhang,et al.  Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 , 2009, Science.

[29]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[30]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[31]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[32]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[33]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .