Anion-assisted supramolecular polymerization: from achiral AB-type monomers to chiral assemblies.

Control over the self-assembly process of monomeric species by functional group modulation is highly desirable in the context of supramolecular polymer design. These materials, unlike covalently linked polymers, consist of monomeric arrays held together by reversible and highly directional noncovalent bonds. Owing to the dynamic and reversible nature of noncovalent interactions, supramolecular polymers display unique topologies and unconventional properties (such as stimuli responsiveness and self-healing) and are thus becoming cutting-edge species in modern materials science. Multiple hydrogen bonds, metal–ligand coordination, and p–p stacking are, by far, the most common weak forces used for engineering supramolecular polymers. Recently, however, oligomeric and polymeric architectures based on host–guest inclusion complexes have started to become more and more popular. Within this research frame, we have recently described a pH-responsive aminododecyloxy-calix[5]arene derivative (C5-NH2) that, upon exposure to a variety of acids, selfassembles into linear oligomers. Protonation activates the two latent self-complementary binding sites of this heteroditopic monomer precursor (i.e. a preorganized cone-shaped p-rich calix[5]arene cavity and a linear alkylamine pendant chain) and, according to a well-established host–guest recognition pattern, which involves a concerted set of weak interactions (NH···O, CH–p, cation–p), supramolecular oligomer formation readily occurs. However, because of the intrinsically saline nature of the monomers used, the growth of these supramolecular assemblies was found to be aniondependent. More specifically, the looser the ion-pairing interactions between the ammonium monomer and its counterion, the higher the degree of polymerization observed. Although ion-pairing effects have been analyzed extensively in relation to simple one-to-one host–guest systems, to the best of our knowledge they have not yet been examined in the context of supramolecular polymers derived from charged monomers. Elegant examples of polymeric species derived from crown ethers, cryptands, cyclodextrins, cucurbiturils, calixarenes, 16] and resorcinarenes have been described, but in none of these instances—neither ABtype (self-complementary heteroditopic) 12a,b, 13a, 17a] nor AA/BB-type (complementary homoditopic) 15, 17b] systems—has the role of the counterion in the growth of the polymer or the tuning of the supramolecular properties been addressed. Drawing on our earlier investigations on the simultaneous complexation of cations and anions 18] and on the design of heteroditopic and heterotetratopic receptors in an attempt to override the drawback of ion-pairing effects in AB-type salt monomers, we have now incorporated an ancillary anion-binding site (namely a ureido moiety) into calix[5]arene C5-NH2 with the aim of facilitating salt dissociation and ultimately making polymer formation more efficient. In this communication we demonstrate that the addition of this anion-binding site to the monomer scaffold is beneficial to the supramolecular polymerization process and, most importantly, we show that modulation of the properties [*] Dr. C. Capici, Dr. G. Gattuso, Dr. A. Notti, Prof. M. F. Parisi Dipartimento di Chimica Organica e Biologica Universit di Messina Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy) E-mail: ggattuso@unime.it mparisi@unime.it

[1]  Feihe Huang,et al.  Supramolecular polymer nanofibers via electrospinning of a heteroditopic monomer. , 2011, Chemical communications.

[2]  Chuan-feng Chen,et al.  Assembly of a self-complementary monomer: formation of supramolecular polymer networks and responsive gels. , 2011, Chemistry.

[3]  Feihe Huang,et al.  Supramolecular AA-BB-type linear polymers with relatively high molecular weights via the self-assembly of bis(m-phenylene)-32-crown-10 cryptands and a bisparaquat derivative. , 2011, Journal of the American Chemical Society.

[4]  A. Schenning,et al.  Hydrogen-bonded Supramolecular π-Functional Materials† , 2011 .

[5]  Zhi Ma,et al.  Formation of linear supramolecular polymers that is driven by C-H⋅⋅⋅π interactions in solution and in the solid state. , 2011, Angewandte Chemie.

[6]  Laura Pirondini,et al.  Host-guest-driven copolymerization of tetraphosphonate cavitands. , 2010, Chemistry.

[7]  J. Rebek,et al.  Deep cavitand receptors with pH-independent water solubility. , 2010, Chemical communications.

[8]  E. W. Meijer,et al.  Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates. , 2010, Journal of the American Chemical Society.

[9]  Y. Fujiwara,et al.  Supramolecular cross-linking of [60]fullerene-tagged polyphenylacetylene by the host-guest interaction of calix[5]arene and [60]fullerene. , 2010, Angewandte Chemie.

[10]  Luigi Fabbrizzi,et al.  Anion recognition by hydrogen bonding: urea-based receptors. , 2010, Chemical Society reviews.

[11]  Jonathan L Sessler,et al.  Ion pair receptors. , 2010, Chemical Society reviews.

[12]  Xi Zhang,et al.  Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions. , 2010, Angewandte Chemie.

[13]  S. Pappalardo,et al.  Calix[5]crown-3-based heteroditopic receptors for n-butylammonium halides , 2010 .

[14]  Yu Liu,et al.  Electrochemical stimulus-responsive supramolecular polymer based on sulfonatocalixarene and viologen dimers. , 2010, Chemical communications.

[15]  Feihe Huang,et al.  Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. , 2010, Angewandte Chemie.

[16]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[17]  Y. Cohen,et al.  Encapsulated or not encapsulated? Mapping alcohol sites in hexameric capsules of resorcin[4]arenes in solution by diffusion NMR spectroscopy. , 2010, Angewandte Chemie.

[18]  J. Lacour,et al.  Chiral anion-mediated asymmetric ion pairing chemistry. , 2009, Chemical communications.

[19]  A. Vacca,et al.  Ion-pair binding: is binding both binding better? , 2009, Chemistry.

[20]  T. Pilati,et al.  Ion-pair separation via selective inclusion/segregation processes , 2009 .

[21]  S. Pappalardo,et al.  Calix[5]arene-based heteroditopic receptor for 2-phenylethylamine hydrochloride. , 2009, The Journal of organic chemistry.

[22]  Akira Harada,et al.  Cyclodextrin-based supramolecular polymers. , 2009, Chemical Society reviews.

[23]  R. Purrello,et al.  Reversible "chiral memory" in ruthenium tris(phenanthroline)-anionic porphyrin complexes. , 2008, Angewandte Chemie.

[24]  Y. Cohen,et al.  Self-assembly dynamics of modular homoditopic bis-calix[5]arenes and long-chain alpha,omega-alkanediyldiammonium components. , 2008, The Journal of organic chemistry.

[25]  Ning Li,et al.  Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers. , 2008, Journal of the American Chemical Society.

[26]  E. Dalcanale,et al.  Host-guest driven self-assembly of linear and star supramolecular polymers. , 2008, Angewandte Chemie.

[27]  Oren A Scherman,et al.  Supramolecular block copolymers with cucurbit[8]uril in water. , 2008, Angewandte Chemie.

[28]  Urs Rauwald,et al.  Supramolekulare Blockcopolymere mit Cucurbit[8]uril in Wasser , 2008 .

[29]  Sybrand van der Zwaag,et al.  Self-Healing Materials , 2008 .

[30]  Y. Cohen,et al.  Self-assembly of resorcin[4]arene in the presence of small alkylammonium guests in solution. , 2008, Organic letters.

[31]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[32]  Y. Cohen,et al.  Counterion-dependent proton-driven self-assembly of linear supramolecular oligomers based on amino-calix[5]arene building blocks. , 2007, Chemistry.

[33]  Y. Takashima,et al.  External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer. , 2007, Journal of the American Chemical Society.

[34]  R. Purrello,et al.  Switching off and on the supramolecular chiral memory in porphyrin assemblies. , 2007, Journal of the American Chemical Society.

[35]  Jeffery T. Davis,et al.  Self-assembled ionophores from isoguanosine: diffusion NMR spectroscopy clarifies cation's and anion's influence on supramolecular structure. , 2007, Chemistry.

[36]  Y. Cohen,et al.  Resorcinarenes are hexameric capsules in solution , 2006, Proceedings of the National Academy of Sciences.

[37]  Y. Takashima,et al.  Self-threading of a poly(ethylene glycol) chain in a cyclodextrin-ring: control of the exchange dynamics by chain length. , 2006, Journal of the American Chemical Society.

[38]  L. Galantini,et al.  Thermodynamics of formation of host-guest supramolecular polymers. , 2006, Journal of the American Chemical Society.

[39]  E. Yashima,et al.  Assisted formation of chiral porphyrin homoaggregates by an induced helical poly(phenylacetylene) template and their chiral memory. , 2006, Angewandte Chemie.

[40]  Feihe Huang,et al.  Polypseudorotaxanes and polyrotaxanes , 2005 .

[41]  D. Garozzo,et al.  A Calix[5]arene‐Based Heterotetratopic Host for Molecular Recognition of Long‐Chain, Ion‐Paired α,ω‐Alkanediyldiammonium Salts , 2005 .

[42]  Y. Takashima,et al.  Preparation of Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules: Control of Structure by Linker Flexibility , 2005 .

[43]  Y. Fukazawa,et al.  Supramolecular nano networks formed by molecular-recognition-directed self-assembly of ditopic calix[5]arene and dumbbell [60]fullerene. , 2005, Journal of the American Chemical Society.

[44]  Gang Wu,et al.  Disodium guanosine 5'-monophosphate self-associates into nanoscale cylinders at pH 8: a combined diffusion NMR spectroscopy and dynamic light scattering study. , 2005, Journal of the American Chemical Society.

[45]  Bruce A Moyer,et al.  Structural design criteria for anion hosts: strategies for achieving anion shape recognition through the complementary placement of urea donor groups. , 2005, Journal of the American Chemical Society.

[46]  Yoram Cohen,et al.  Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter--new insights. , 2005, Angewandte Chemie.

[47]  Yoram Cohen,et al.  Diffusions‐NMR‐Spektroskopie in der Supramolekularen und Kombinatorischen Chemie: ein alter Parameter – neue Erkenntnisse , 2005 .

[48]  Heng Xu,et al.  CO2 in supramolecular chemistry: preparation of switchable supramolecular polymers. , 2004, Chemistry.

[49]  Y. Cohen,et al.  Self-recognition, structure, stability, and guest affinity of pyrogallol[4]arene and resorcin[4]arene capsules in solution. , 2004, Journal of the American Chemical Society.

[50]  Feihe Huang,et al.  Ion pairing in fast-exchange host-guest systems: concentration dependence of apparent association constants for complexes of neutral hosts and divalent guest salts with monovalent counterions. , 2003, Journal of the American Chemical Society.

[51]  A. Secchi,et al.  Recognition of guests bearing donor and acceptor hydrogen bonding groups by heteroditopic calix[4]arene receptors , 2003 .

[52]  H. Gibson,et al.  Ion pairing and host-guest complexation in low dielectric constant solvents. , 2003, Journal of the American Chemical Society.

[53]  S. Pappalardo,et al.  Multipoint molecular recognition of amino acids and biogenic amines by ureidocalix[5]arene receptors. , 2003, Organic Letters.

[54]  D. Garozzo,et al.  Guest-induced capsular assembly of calix[5]arenes , 2002 .

[55]  Jean-Marie Lehn,et al.  Supramolecular polymer chemistry—scope and perspectives†‡ , 2002 .

[56]  S. Pappalardo,et al.  Remarkable boosting of the binding of ion-paired organic salts by binary host systems. , 2002, Angewandte Chemie.

[57]  S. Pappalardo,et al.  Shape recognition of alkylammonium ions by 1,3-bridged calix[5]arene crown-6 ethers: endo- vs exo-cavity complexation. , 2002, The Journal of organic chemistry.

[58]  D. Reinhoudt,et al.  An enantiomerically pure hydrogen-bonded assembly , 2000, Nature.

[59]  J. M. Rivera,et al.  Chiral Guests and Their Ghosts in Reversibly Assembled Hosts , 2000 .

[60]  K. Yamaguchi,et al.  Chirality-Memory Molecule: Crystallographic and Spectroscopic Studies on Dynamic Molecular Recognition Events by Fully Substituted Chiral Porphyrins , 2000 .

[61]  A. J. Lovinger,et al.  Hierarchy of Order in Liquid Crystalline Polycaps. , 1999, Angewandte Chemie.

[62]  Julius Rebek,et al.  HIERARCHISCHE ORDNUNG BEI FLUSSIGKRISTALLINEN POLYKAPSELN , 1999 .

[63]  H. Gibson,et al.  Formation of Supramolecular Polymers from Homoditopic Molecules Containing Secondary Ammonium Ions and Crown Ether Moieties , 1999 .

[64]  Nori Yamaguchi,et al.  BILDUNG SUPRAMOLEKULARER POLYMERE AUS HOMODITOPEN BAUSTEINEN, DIE SEKUNDARE AMMONIOGRUPPEN UND KRONENETHEREINHEITEN ENTHALTEN , 1999 .

[65]  H. Gibson,et al.  Self-Organization of a Heteroditopic Molecule to Linear Polymolecular Arrays in Solution. , 1998, Angewandte Chemie.

[66]  Nori Yamaguchi,et al.  Selbstorganisation eines heteroditopen Molekls zu linearen Aggregaten in Lsung , 1998 .

[67]  Andrew J. P. White,et al.  Self-assembling supramolecular daisy chains , 1998 .

[68]  David J. Williams,et al.  Supramolekulare Gänseblümchenketten durch Selbstorganisation , 1998 .

[69]  S. Pappalardo,et al.  Calix[5]arene‐Based Molecular Vessels for Alkylammonium Ions , 1998 .

[70]  F. Arnaud-Neu,et al.  Molekulare Gefäße auf Calix[5]aren-Basis für Alkylammonium-Ionen , 1998 .

[71]  T. Aida,et al.  Chirality-Memory Molecule: A D2-Symmetric Fully Substituted Porphyrin as a Conceptually New Chirality Sensor , 1997 .

[72]  José García de la Torre,et al.  Comparison of theories for the translational and rotational diffusion coefficients of rod‐like macromolecules. Application to short DNA fragments , 1984 .

[73]  J. F. Stoddart,et al.  Solution-phase counterion effects in supramolecular and mechanostereochemical systems. , 2011, Chemical Society reviews.

[74]  William R. Dichtel,et al.  Complexation between methyl viologen (paraquat) bis(hexafluorophosphate) and dibenzo[24]crown-8 revisited. , 2009, Chemistry.

[75]  W. Watson,et al.  Conformational Characteristics of Ethers and Esters of p-tert-Butylcalix[5]arene , 1995 .