Generalised sequent calculus for propositional modal logics
暂无分享,去创建一个
[1] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[2] R. Feys,et al. Les systèmes formalisés des modalités aristotéliciennes , 1950 .
[3] Haskell B. Curry,et al. The elimination theorem when modality is present , 1952, Journal of Symbolic Logic.
[4] Kazuo Matsumoto,et al. Gentzen method in modal calculi. II , 1957 .
[5] R. L. Goodstein,et al. Provability in logic , 1959 .
[6] Haskell B. Curry,et al. Foundations of Mathematical Logic , 1964 .
[7] John L. Pollock,et al. Basic modal logic , 1967, Journal of Symbolic Logic.
[8] A. Slisenko. Studies in constructive mathematics and mathematical logic , 1969 .
[9] G. Mints,et al. Cut-Free Calculi of the S5 Type , 1970 .
[10] Melvin Fitting,et al. Model existence theorems for modal and intuitionistic logics , 1973, Journal of Symbolic Logic.
[11] Silvio Valentini,et al. A modal sequent calculus for a fragment of arithmetic , 1980 .
[12] Masahiko Sato. A Cut-Free Gentzen-Type System for the Modal Logic S5 , 1980, J. Symb. Log..
[13] Silvio Valentini,et al. The modal logic of provability. The sequential approach , 1982, J. Philos. Log..
[14] Nuel Belnap,et al. Display logic , 1982, J. Philos. Log..
[15] M. Fitting. Proof Methods for Modal and Intuitionistic Logics , 1983 .
[16] Kosta Dosen,et al. Sequent-systems for modal logic , 1985, Journal of Symbolic Logic.
[17] Arnon Avron,et al. Simple Consequence Relations , 1988, Inf. Comput..
[18] Claudio Cerrato,et al. Modal Sequents for Normal Modal Logics , 1993, Math. Log. Q..
[19] Heinrich Wansing,et al. Strong Cut-Elimination for Constant Domain First-Order S5 , 1995, Log. J. IGPL.
[20] Andrzej Indrzejczak,et al. Cut-free Double Sequent Calculus for S5 , 1998, Log. J. IGPL.