Automated robotic tracking of gelatinous animals in the deep ocean

This dissertation introduces new technologies to enable autonomous robotic tracking of gelatinous animals in the deep ocean. The expense and challenge of accessing the deep ocean continue to limit long-duration observations of gelatinous marine animals. Behaviors of gelatinous species, collectively referred to here as jellies, are remarkably complex given their relatively simple physiology. Most jellies do not have a centralized nervous system, yet these animals demonstrate intricate foraging, migration, evasion and aggregation behaviors. New technologies are required to discover previously unobserved behaviors, to study behavioral distributions over time, and to investigate the links between behaviors and environmental stimuli. Automation addresses the two significant limitations associated with current-generation technologies for gelatinous-animal observation: human-pilot fatigue and infrastructure cost. To overcome these limitations, this dissertation develops a core automated jelly-tracking capability and demonstrates its successful deployment as a pilot-assist for a remotely-operated vehicle (ROV). Key challenges in the design of a reliable jellyfish-tracking robot include the development of visual sensing and automatic control components tailored to the application. A new vision design tool, called segmentation efficiency, is introduced to narrow the set of prospective vision-processing algorithms by analyzing a database of application-specific reference images. In the context of a jellyfish database, this performance assessment tool leads to the development of a gradient-based algorithm that reliably tracks a wide range of gelatinous animal species under varied lighting conditions. This dissertation also develops a vision-based control technique, specific to the jelly-tracking application. The control law balances the requirements to enforce the camera viewing-cone aggressively and to minimize overall vehicle thrust, which may artificially stimulate animal behavior. A series of dive experiments in the Monterey Bay validated the combined vision and control system under field conditions. These experiments resulted in repeated successful demonstrations of animal tracking for periods as long as 89 minutes. Additional theoretical work investigates the transition of demonstrated jelly-tracking technology for use with an energy-constrained autonomous underwater vehicle (AUV) platform. This work focuses on the use of a strobed lighting system to reduce the power budget and improve the data quality for tracking gelatinous animals over periods of 24 hours or more.

[1]  Georgia Coastal,et al.  Future marine zooplankton research—a perspective , 2001 .

[2]  M. Arai,et al.  Behaviour of Planktonic Coelenterates in Temperature and Salinity Discontinuity Layers , 1976 .

[3]  Nilanjan Sarkar,et al.  Adaptive control of an autonomous underwater vehicle: experimental results on ODIN , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[4]  Claudia E. Mills,et al.  Pacific Coast Pelagic Invertebrates: A Guide to the Common Gelatinous Animals , 1998 .

[5]  Joseph Wilder,et al.  Fish detection and classification system , 1998, Other Conferences.

[6]  Xun Xu,et al.  Mosaic-based positioning and improved motion-estimation methods for automatic navigation of submersible vehicles , 2002 .

[7]  G. I. Matsumoto,et al.  Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.) , 2003 .

[8]  Stephen M. Rock,et al.  A pilot-aid for ROV based tracking of gelatinous animals in the midwater , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[9]  Liu Hsu,et al.  Design of a high performance variable structure position control of ROVs , 1995 .

[10]  S. D. Fleischer,et al.  Global position determination and vehicle path estimation from a vision sensor for real-time video mosaicking and navigation , 1997, Oceans '97. MTS/IEEE Conference Proceedings.

[11]  Graham H. Pyke,et al.  Optimal Foraging: A Selective Review of Theory and Tests , 1977, The Quarterly Review of Biology.

[12]  V. Rich Personal communication , 1989, Nature.

[13]  Widder,et al.  The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering , 1999, Journal of theoretical biology.

[14]  John H. Costello,et al.  In situ time budgets of the scyphomedusae Aurelia aurita, Cyanea sp., and Chrysaora quinquecirrha , 1998 .

[15]  A. N. Spencer,et al.  Neuronal mechanisms of a hydromedusan shadow reflex , 2004, Journal of Comparative Physiology A.

[16]  William M. Hamner,et al.  Ethological observations on foraging behavior of the ctenophore Leucothea sp. in the open sea1 , 1987 .

[17]  Alexander Zelinsky,et al.  Preliminary experiments in visual servo control for autonomous underwater vehicle , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[18]  L. Murbach,et al.  SOME LIGHT REACTIONS OF THE MEDUSA GONIONEMUS , 1909 .

[19]  Stephen M. Rock,et al.  Field experiments in the control of a Jellyfish tracking ROV , 2002, OCEANS '02 MTS/IEEE.

[20]  David M. Chapman,et al.  I – Cnidarian Histology , 1974 .

[21]  Emanuele Trucco,et al.  Application of 2 1/2 D visual servoing to underwater vehicle station-keeping , 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158).

[22]  C. L. Singla Ocelli of hydromedusae , 1974, Cell and Tissue Research.

[23]  Dana R. Yoerger,et al.  Preliminary experiments in model-based thruster control for underwater vehicle positioning , 1999 .

[24]  Thomas L. Daniel,et al.  Cost of Locomotion: Unsteady Medusan Swimming , 1985 .

[25]  J. Young,et al.  Hydrozoa , 1871, Transactions of the Glasgow Geological Society.

[26]  R.H. Byrne,et al.  Sensor development: progress towards systems for AUVs/UUVs MTS Oceans 2000 , 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158).

[27]  Ralf Bachmayer,et al.  An open loop nonlinear model based thrust controller for marine thrusters , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[28]  J. Costello,et al.  Flow and feeding by swimming scyphomedusae , 1995 .

[29]  Claudia E. Mills,et al.  Piggyback riding by pandalid shrimp larvae on hydromedusae , 1993 .

[30]  Alice L. Alldredge,et al.  Discarded appendicularian houses as sources of food, surface habitats, and particulate organic matter in planktonic environments , 1976 .

[31]  Emanuele Trucco,et al.  A 2D visual servoing for underwater vehicle station keeping , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[32]  Shahriar Negahdaripour,et al.  Positioning and photo-mosaicking with long image sequences; comparison of selected methods , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[33]  W. Hamner,et al.  3-D as an underwater tool , 1988, OCEANS '88. 'A Partnership of Marine Interests'. Proceedings.

[34]  Qamar Schuyler,et al.  Light responses and die1 migration of the scyphomedusa Chrysaora quinquecirrha in mesocosms , 1997 .

[35]  William M. Hamner,et al.  Predation, cover, and convergent evolution in epipelagic oceans , 1995 .

[36]  M. B. Leahy,et al.  Robotic aircraft refueling: a concept demonstration , 1990, IEEE Conference on Aerospace and Electronics.

[37]  Claudia E. Mills,et al.  In Situ Foraging and Feeding Behaviour of Narcomedusae (Cnidaria: Hydrozoa) , 1989, Journal of the Marine Biological Association of the United Kingdom.

[38]  S. van der Zwaan,et al.  Real-time vision-based station keeping for underwater robots , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[39]  J. Haney Diel patterns of zooplankton behavior , 1988 .

[40]  G. Mackie,et al.  Defensive strategies in planktonic coelenterates , 1995 .

[41]  Erhan Mutlu,et al.  Target strength of the common jellyfish (Aurelia aurita): a preliminary experimental study with a dual-beam acoustic system , 1996 .

[42]  John M. Gosline,et al.  Mechanics of Jet Propulsion in the Hydromedusan Jellyfish, Polyorchis Penicillatus: II. Energetics of the Jet Cycle , 1988 .

[43]  Louis L. Whitcomb,et al.  The effect of model accuracy and thruster saturation on tracking performance of model based controllers for underwater robotic vehicles: experimental results , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[44]  S. A. Arkett,et al.  THE SHADOW RESPONSE OF A. HYDROMEDUSAN (POLYORCHIS PENICILLATUS): BEHAVIORAL MECHANISMS CONTROLLING DIEL AND ONTOGENIC VERTICAL MIGRATION. , 1985, The Biological bulletin.

[45]  Laurence P. Madin,et al.  Feeding behavior of tentaculate predators: in situ observations and a conceptual model , 1988 .

[46]  David A. Wright,et al.  Effect of Salinity on Ionic Shifts in Mesohaline Scyphomedusae, Chrysaora quinquecirrha. , 1997, The Biological Bulletin.

[47]  Neil A. Thacker,et al.  Performance characterisation in computer vision: statistics in testing and design , 2001 .

[48]  Andrew Richard Conway,et al.  Autonomous control of an unstable model helicopter using carrier phase gps only , 1995 .

[49]  William M. Hamner,et al.  Predatory behavior ofPhacellophora camtschatica and size-selective predation uponAurelia aurita (Scyphozoa: Cnidaria) in Saanich Inlet, British Columbia , 1988 .

[50]  R. W. Gilmer,et al.  Underwater observations of gelatinous zooplankton : Sampling problems, feeding biology, and behavior1 , 1975 .

[51]  Kenichi Kanatani,et al.  Geometric computation for machine vision , 1993 .

[52]  Timothy W. McLain,et al.  Experimental Measurement of ROV Tether Tension , 1992 .

[53]  Daniel Tl Invertebrate swimming: integrating internal and external mechanics. , 1995 .

[54]  Kevin W. Bowyer Experiences with Empirical Evaluation of Computer Vision Algorithms , 1998, Theoretical Foundations of Computer Vision.

[55]  V. Martin,et al.  Photoreceptors of cnidarians , 2002 .

[56]  Bülent Sankur,et al.  Performance evaluation metrics for object-based video segmentation , 2000, 2000 10th European Signal Processing Conference.

[57]  R. L. Marks,et al.  Automatic visual station keeping of an underwater robot , 1994, Proceedings of OCEANS'94.

[58]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  B. H. Robison,et al.  Seasonal abundance and vertical distribution of mesopelagic calycophoran siphonophores in Monterey Bay, CA , 2000 .

[60]  Dana R. Yoerger,et al.  Development, comparison, and preliminary experimental validation of nonlinear dynamic thruster models , 1999 .

[61]  C Weber,et al.  Electrical activities of a type of electroretinogram recorded from the ocellus of a jellyfish, Polyorchis penicillatus (Hydromedusae). , 1982, The Journal of experimental zoology.

[62]  William M. Ilamner,et al.  Long‐distance horizontal migrations of zooplankton (Scyphomedusae: Mastigias)1 , 1981 .

[63]  David P. Fries,et al.  In-situ chemical analysis using mass spectrometry on unmanned underwater vehicles , 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No.00CH37158).

[64]  C. Roman,et al.  Estimation of error in large area underwater photomosaics using vehicle navigation data , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[65]  William M. Hamner,et al.  Sensory ecology of scyphomedusae , 1995 .

[66]  C. Mills,et al.  In situ observations of the behavior of mesopelagic Solmissus narcomedusae (Cnidaria, Hydrozoa) , 1988 .

[67]  Sylvia A. Earle,et al.  Sea Change: A Message of the Oceans , 1995 .

[68]  Christian H. Weber,et al.  Electrical activity in response to light of the ocellus of the hydromedusan , 1982 .

[69]  Bruce H. Robison,et al.  A new mesopelagic larvacean, Mesochordaeus erythrocephalus, sp. nov., from Monterey Bay, with a description of its filtering house , 1999 .

[70]  Friday Harbor,et al.  Diversity of Swimming Behaviors in Hydromedusae as Related to Feeding and Utilization of Space , 1981 .

[71]  Andrea Serrani,et al.  Global robust tracking with disturbance attenuation for unmanned underwater vehicles , 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104).

[72]  A. J. Healey,et al.  Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles , 1993 .

[73]  Xiaoou Tang,et al.  Plankton image classification using novel parallel-training learning vector quantization network , 1996, OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean - Prospects for the 21st Century.

[74]  Peter H. Wiebe,et al.  Sound scattering by the gelatinous zooplankters Aequorea victoria and Pleurobrachia bachei , 1998 .

[75]  Patrick Rives,et al.  Underwater pipe inspection task using visual servoing techniques , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[76]  William M. Hamner,et al.  Modes of water manipulation by the lobate ctenophore Leucothea sp. , 1988 .

[77]  Claudia E. Mills,et al.  Use of the Pisces IV Submersible for Zooplankton Studies in Coastal Waters of British Columbia , 1983 .

[78]  Bruce H. Robison,et al.  Midwater research methods with MBARI'S ROV , 1992 .

[79]  Kevin W. Bowyer,et al.  Overview of Work in Empirical Evaluation of Computer Vision Algorithms , 1998 .

[80]  Richard Ellis Deep Atlantic: Life, Death, and Exploration in the Abyss , 1996 .

[81]  W. Hamner,et al.  Future studies of zooplankon behavior: Questions and technological developments , 1988 .

[82]  C. L. Singla,et al.  Statocysts of hydromedusae , 2004, Cell and Tissue Research.

[83]  T. Daniel Mechanics and energetics of medusan jet propulsion , 1983 .

[84]  K. Bailey,et al.  A laboratory study of predation by Aurelia aurita on larval herring (Clupea harengus): Experimental observations compared with model predictions , 1983 .

[85]  Claudia E. Mills,et al.  Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change , 1999 .

[86]  Lawrence B. Wolff,et al.  Applications of Polarization Camera Technology , 1995, IEEE Expert.

[87]  G A Horridge,et al.  Statocysts of medusae and evolution of stereocilia. , 1969, Tissue & cell.

[88]  Junku Yuh,et al.  Adaptive DOB control of underwater robotic vehicles , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[89]  J. P. Brown,et al.  Toward an improved understanding of thruster dynamics for underwater vehicles , 1995, IEEE Journal of Oceanic Engineering.

[90]  Nilanjan Sarkar,et al.  Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation , 2002, IEEE Trans. Robotics Autom..

[91]  G. Mackie,et al.  Electrically coupled, photosensitive neurons control swimming in a jellyfish. , 1977, Science.

[92]  J. Santos-Victor,et al.  Underwater mosaicing and trajectory reconstruction using global alignment , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[93]  Meyer Nahon,et al.  The motion of a deep-sea remotely operated vehicle system: Part 1: Motion observations , 2000 .

[94]  Çîîëîãèÿ áåñïîçâîíî÷íûõ,et al.  Invertebrate Zoology , 1927, Nature.

[95]  Luigi Villani,et al.  An output feedback algorithm for position and attitude tracking control of underwater vehicles , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[96]  S. D. Fleischer,et al.  Station keeping of an ROV using vision technology , 1997, Oceans '97. MTS/IEEE Conference Proceedings.

[97]  Mamoru Minami,et al.  Manipulator visual servoing and tracking of fish using a genetic algorithm , 1999 .

[98]  X. Cufi,et al.  A system to evaluate the accuracy of a visual mosaicking methodology , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[99]  W. Hamner,et al.  The importance of ethology for investigations of marine zooplankton , 1985 .

[100]  Paulo Villegas,et al.  Objective evaluation of segmentation masks in video sequences , 2000, 2000 10th European Signal Processing Conference.

[101]  Bruce H. Robison,et al.  The coevolution of undersea vehicles and deep-sea research , 1999 .

[102]  P. Hamner,et al.  Swimming, feeding, circulation and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria: Cubozoa) , 1995 .

[103]  Stephen M. Rock,et al.  Visual tracking of jellyfish in situ , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[104]  Masao Yoshida,et al.  ELECTRICAL ACTIVITIES OF THE ANTHOMEDUSAN, SPIROCODON SALTATRIX (TILESIUS) , 1973 .

[105]  K. R. Goheen,et al.  Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles , 1990 .

[106]  François Chaumette,et al.  Path planning in image space for robust visual servoing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[107]  Peter I. Corke,et al.  A new partitioned approach to image-based visual servo control , 2001, IEEE Trans. Robotics Autom..

[108]  William M. Hamner,et al.  A physical context for gelatinous zooplankton aggregations: a review , 2001 .

[109]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[110]  Bruce H. Robison,et al.  In situ observations of giant appendicularians in Monterey Bay , 1992 .

[111]  Dean A. Pomerleau,et al.  Overtaking vehicle detection using implicit optical flow , 1997, Proceedings of Conference on Intelligent Transportation Systems.

[112]  A. M. Perdon,et al.  Rejecting the disturbances due to the umbilical's traction in ROV's control , 1998, IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings (Cat. No.98CH36259).

[113]  Sean P Colin,et al.  Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae. , 2002, The Journal of experimental biology.

[114]  Aaron M. Plotnik,et al.  Quantification of cyclic motion of marine animals from computer vision , 2002, OCEANS '02 MTS/IEEE.

[115]  A. Roberts,et al.  Preliminary observations on escape swimming and giant neurons in Aglantha digitale (Hydromedusae: Trachylina) , 1980 .

[116]  Lawrence Edwin Mertens In-water photography : theory and practice , 1970 .

[117]  R. J. Larson Costs of transport for the scyphomedusa Stomolophus meleagris L. Agassiz , 1987 .

[118]  Claudia E. Mills,et al.  DENSITY IS ALTERED IN HYDROMEDUSAE AND CTENOPHORES IN RESPONSE TO CHANGES IN SALINITY , 1984 .

[119]  Claudia E. Mills,et al.  Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems , 1995 .

[120]  Scott Samson,et al.  A system for high-resolution zooplankton imaging , 2001 .

[121]  Seth Hutchinson,et al.  Real-time vision, tracking and control , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[122]  Stephen M. Rock,et al.  Demonstration of a vision-based dead-reckoning system for navigation of an underwater vehicle , 1998, Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles (Cat. No.98CH36290).

[123]  Claudia E. Mills,et al.  Vertical migration and diel activity patterns of hydromedusae: studies in a large tank , 1983 .

[124]  Claudia E. Mills,et al.  EVIDENCE THAT ION REGULATION IN HYDROMEDUSAE AND CTENOPHORES DOES NOT FACILITATE VERTICAL MIGRATION , 1984 .

[125]  Mario Innocenti,et al.  Robust control of underwater vehicles: sliding mode control vs. mu synthesis , 1998, IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings (Cat. No.98CH36259).

[126]  A. Benović,et al.  Diurnal vertical migration of Solmissus albescens (Hydromedusae) in the Southern Adriatic , 1973, Marine Biology.

[127]  Gregory D. Hager,et al.  Robust Vision for Vision-Based Control of Motion , 1999 .

[128]  Sönke Johnsen,et al.  Ultraviolet absorption in transparent zooplankton and its implications for depth distribution and visual predation , 2001 .

[129]  M. Arai,et al.  Attraction of Aurelia and Aequorea to prey , 1991, Hydrobiologia.

[130]  Howard H. Wang,et al.  Experiments in intervention autonomous underwater vehicles , 1996 .

[131]  J. Purcell,et al.  Interactions of pelagic cnidarians and ctenophores with fish: a review , 2001, Hydrobiologia.

[132]  L. Whitcomb,et al.  Advances in fusion of high resolution underwater optical and acoustic data , 2000, Proceedings of the 2000 International Symposium on Underwater Technology (Cat. No.00EX418).

[133]  He Huang,et al.  Automatic Plankton Image Recognition , 1998, Artificial Intelligence Review.

[134]  J. Christian Gerdes,et al.  A Unified Approach to Driver Assistance Systems Based on Artificial Potential Fields , 1999, Dynamic Systems and Control.

[135]  W. M. Hammer,et al.  Behavior of plankton and patch formation in pelagic ecosystems , 1988 .

[136]  Stephen M. Rock,et al.  A LOW ENERGY SENSOR FOR AUV-BASED JELLYFISH TRACKING , 2001 .

[137]  C. Chow,et al.  Automatic boundary detection of the left ventricle from cineangiograms. , 1972, Computers and biomedical research, an international journal.

[138]  D. M. Kocak,et al.  Computer vision techniques for quantifying, tracking, and identifying bioluminescent plankton , 1999 .

[139]  John H. Costello,et al.  Swimming and feeding by the scyphomedusa Chrysaora quinquecirrha , 1997 .

[140]  A. Balasuriya,et al.  Autonomous target tracking by AUVs using dynamic vision , 2000, Proceedings of the 2000 International Symposium on Underwater Technology (Cat. No.00EX418).

[141]  C. Mills,et al.  Western Atlantic midwater hydrozoan and scyphozoan medusae: in situ studies using manned submersibles , 1991, Hydrobiologia.

[142]  Junku Yuh,et al.  Experimental study on adaptive control of underwater robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[143]  Dana R. Yoerger,et al.  Supervisory control system for the JASON ROV , 1986 .

[144]  John H. Costello,et al.  Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita , 1994 .

[145]  Jean-Jacques E. Slotine,et al.  The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design , 1990 .

[146]  Francisco P. Chavez,et al.  Seasonal abundance of the siphonophore, Nanomia bijuga, in Monterey Bay , 1998 .

[147]  Maria Letizia Corradini,et al.  A discrete adaptive variable-structure controller for MIMO systems, and its application to an underwater ROV , 1997, IEEE Trans. Control. Syst. Technol..

[148]  Thor I. Fossen,et al.  Guidance and control of ocean vehicles , 1994 .