Optical Tweezers in Studies of Red Blood Cells

Optical tweezers (OTs) are innovative instruments utilized for the manipulation of microscopic biological objects of interest. Rapid improvements in precision and degree of freedom of multichannel and multifunctional OTs have ushered in a new era of studies in basic physical and chemical properties of living tissues and unknown biomechanics in biological processes. Nowadays, OTs are used extensively for studying living cells and have initiated far-reaching influence in various fundamental studies in life sciences. There is also a high potential for using OTs in haemorheology, investigations of blood microcirculation and the mutual interplay of blood cells. In fact, in spite of their great promise in the application of OTs-based approaches for the study of blood, cell formation and maturation in erythropoiesis have not been fully explored. In this review, the background of OTs, their state-of-the-art applications in exploring single-cell level characteristics and bio-rheological properties of mature red blood cells (RBCs) as well as the OTs-assisted studies on erythropoiesis are summarized and presented. The advance developments and future perspectives of the OTs’ application in haemorheology both for fundamental and practical in-depth studies of RBCs formation, functional diagnostics and therapeutic needs are highlighted.

[1]  James Cooper,et al.  Laser trap ionization for identification of human erythrocytes with variable hemoglobin quantitation , 2018, Journal of biomedical optics.

[2]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[3]  A. Blázquez-Castro Optical Tweezers: Phototoxicity and Thermal Stress in Cells and Biomolecules , 2019, Micromachines.

[4]  S. Majumder,et al.  Red blood cell membrane damage by light‐induced thermal gradient under optical trap , 2018, Journal of biophotonics.

[5]  H. Rubinsztein-Dunlop,et al.  Calculation and optical measurement of laser trapping forces on non-spherical particles , 2001 .

[6]  K. Kim,et al.  Biomechanical properties of red blood cells infected by Plasmodium berghei ANKA , 2019, Journal of cellular physiology.

[7]  A. Ashkin,et al.  Internal cell manipulation using infrared laser traps. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[9]  S. Block,et al.  Construction of multiple-beam optical traps with nanometer-resolution position sensing , 1996 .

[10]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[11]  M W Berns,et al.  Effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa. , 1996, Human reproduction.

[12]  W. C. Hwang,et al.  Membrane instability in late-stage erythropoiesis. , 2001, Blood.

[13]  H. P. Fernandes,et al.  Measuring red blood cell aggregation forces using double optical tweezers , 2013, Scandinavian journal of clinical and laboratory investigation.

[14]  Igor Meglinski,et al.  Mutual interaction of red blood cells influenced by nanoparticles , 2019, Scientific Reports.

[15]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[16]  M. Sheetz,et al.  Optical tweezers in cell biology. , 1992, Trends in cell biology.

[17]  M. Abkarian,et al.  A simple model to understand the effect of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow. , 2015, Soft matter.

[18]  L. Goldstein,et al.  Bead movement by single kinesin molecules studied with optical tweezers , 1990, Nature.

[19]  G. Daley,et al.  Origins of mammalian hematopoiesis: in vivo paradigms and in vitro models. , 2004, Current topics in developmental biology.

[20]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[21]  Lasse Evensen,et al.  Optical micromanipulation of nanoparticles and cells inside living zebrafish , 2016, Nature Communications.

[22]  H. P. Fernandes,et al.  Optical Tweezers as a New Biomedical Tool to Measure Zeta Potential of Stored Red Blood Cells , 2012, PloS one.

[23]  Igor Meglinski,et al.  Impact of Nanocapsules on Red Blood Cells Interplay Jointly Assessed by Optical Tweezers and Microscopy , 2019, Micromachines.

[24]  Yun Yu,et al.  Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing. , 2016, Optics express.

[25]  W. Alexander,et al.  Haematopoietic stem cells: past, present and future , 2017, Cell Death Discovery.

[26]  Jonathan M. Cooper,et al.  Microrheology with optical tweezers: data analysis , 2012 .

[27]  Claus Duschl,et al.  Micromanipulation of Langmuir-monolayers with optical tweezers. , 2001 .

[28]  Francesco S Pavone,et al.  Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. , 2013, Biophysical journal.

[29]  Deepak Mathur,et al.  Torque-generating malaria-infected red blood cells in an optical trap. , 2004, Optics express.

[30]  H. Mairbäurl Red Blood Cell Function in Hypoxia at Altitude and Exercise , 1994, International journal of sports medicine.

[31]  V. Natarajan,et al.  Studying the rigidity of red blood cells induced by Plasmodium falciparum infection , 2019, Scientific Reports.

[32]  Pavel Zemánek,et al.  Two- and three-beam interferometric optical tweezers , 2005 .

[33]  Igor Meglinski,et al.  Influence of Pulsed He–Ne Laser Irradiation on the Red Blood Cell Interaction Studied by Optical Tweezers , 2019, Micromachines.

[34]  John Bechhoefer,et al.  Faster, cheaper, safer optical tweezers for the undergraduate laboratory , 2002 .

[35]  Yunlong Sheng,et al.  Dynamic deformation of red blood cell in dual-trap optical tweezers. , 2010, Optics express.

[36]  M W Rampling,et al.  Influence of cell-specific factors on red blood cell aggregation. , 2004, Biorheology.

[37]  A. Cox,et al.  An experiment to measure Mie and Rayleigh total scattering cross sections , 2002 .

[38]  Cheng-Wei Qiu,et al.  Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects , 2017, Light: Science & Applications.

[39]  P. Biagioni,et al.  Chiral optical tweezers for optically active particles in the T-matrix formalism , 2019, Scientific Reports.

[40]  Saurabh Raj,et al.  Mechanochemistry of single red blood cells monitored using Raman tweezers , 2012, Biomedical optics express.

[41]  K. Dholakia,et al.  Optical trapping for analytical biotechnology. , 2012, Current opinion in biotechnology.

[42]  M W Berns,et al.  Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. , 1996, Biophysical journal.

[43]  D. Hanstorp,et al.  Sorting Out Bacterial Viability with Optical Tweezers , 2000, Journal of bacteriology.

[44]  Halina Rubinsztein-Dunlop,et al.  Optical tweezers: Theory and modelling , 2014 .

[45]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[46]  A. Mehta,et al.  Single-molecule biomechanics with optical methods. , 1999, Science.

[47]  Igor Meglinski,et al.  Mutual interaction of red blood cells assessed by optical tweezers and scanning electron microscopy imaging. , 2018, Optics letters.

[48]  Subra Suresh,et al.  The biomechanics toolbox: experimental approaches for living cells and biomolecules , 2003 .

[49]  Michael W Berns,et al.  Optical tweezers: tethers, wavelengths, and heat. , 2007, Methods in cell biology.

[50]  M. Prentiss,et al.  Demonstration of a fiber-optical light-force trap. , 1993, Optics letters.

[51]  Xinghua Qu,et al.  Mechanical properties of RBCs under oxidative stress measured by optical tweezers , 2019, Optics Communications.

[52]  E. Zaino PATHOPHYSIOLOGY OF THALASSEMIA , 1980, Annals of the New York Academy of Sciences.

[53]  Maria Grazia Donato,et al.  Optical tweezers and their applications , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[54]  Ya-Tang Yang,et al.  Origin and Future of Plasmonic Optical Tweezers , 2015, Nanomaterials.

[55]  Ethan K. Scott,et al.  Optical trapping in vivo: theory, practice, and applications , 2019, Nanophotonics.

[56]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[57]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[58]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[59]  K. Sung,et al.  Theoretical and experimental studies on cross-bridge migration during cell disaggregation. , 1989, Biophysical journal.

[60]  Tomáš Čižmár,et al.  Multiple optical trapping and binding: new routes to self-assembly , 2010 .

[61]  Rance Solomon,et al.  Direct laser trapping for measuring the behavior of transfused erythrocytes in a sickle cell anemia patient , 2012, Biomedical optics express.

[62]  D. Grier A revolution in optical manipulation , 2003, Nature.

[63]  M. Kinnunen,et al.  Probing the Red Blood Cells Aggregating Force With Optical Tweezers , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[64]  Menghong Sun,et al.  Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells. , 2006, Optics letters.

[65]  Chung Yu Chan,et al.  Probing cell-cell communication with microfluidic devices. , 2013, Lab on a chip.

[66]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[67]  S. Rivella Ineffective erythropoiesis and thalassemias , 2009, Current opinion in hematology.

[68]  Svetlana P. Kotova,et al.  Further Development of the Laser Tweezers Technique for Biomedical Applications , 2013 .

[69]  S. Suresha,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[70]  G. Sonek,et al.  Evidence for localized cell heating induced by infrared optical tweezers. , 1995, Biophysical journal.

[71]  S. Suresh,et al.  Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. , 2004, Mechanics & chemistry of biosystems : MCB.

[72]  Hongbao Xin,et al.  Fiber-based optical trapping and manipulation , 2017 .

[73]  Halina Rubinsztein-Dunlop,et al.  Physics of optical tweezers. , 2007, Methods in cell biology.

[74]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[75]  Michael P. MacDonald,et al.  Optical Tweezers: the next generation , 2002 .

[76]  Marco Capitanio,et al.  Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction , 2019, Biophysical Reviews.

[77]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[78]  Rong Chen,et al.  Application of a near-infrared laser tweezers Raman spectroscopy system for label-free analysis and differentiation of diabetic red blood cells. , 2018, Biomedical optics express.

[79]  S. Suresh,et al.  Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships , 2006 .

[80]  Andrew Forbes,et al.  A vector holographic optical trap , 2018, Scientific Reports.

[81]  Steven M Block,et al.  Optical tweezers study life under tension. , 2011, Nature photonics.

[82]  Francesco S. Pavone,et al.  Calibration of optical tweezers with positional detection in the back focal plane , 2006, physics/0603037.

[83]  David G. Grier,et al.  Nanofabrication with holographic optical tweezers , 2002 .

[84]  Yael Roichman,et al.  Holographic optical trapping. , 2006, Applied optics.

[85]  Kisung Lee,et al.  Assessment of the “cross-bridge”-induced interaction of red blood cells by optical trapping combined with microfluidics , 2017, Journal of biomedical optics.

[86]  H. Yao,et al.  Vibartional Spectroscopic Identification of α- and β - Thalassemia with Single-Cell Raman Tweezers , 2006 .

[87]  K. Dholakia,et al.  Optical micromanipulation using a Bessel light beam , 2001 .

[88]  Mara Prentiss,et al.  Inexpensive optical tweezers for undergraduate laboratories , 1999 .

[89]  K. Greulich Practical aspects of working with laser microbeams and optical tweezers: data and equations. , 2007, Methods in cell biology.

[90]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[91]  M. Padgett,et al.  Optical trapping and binding , 2013, Reports on progress in physics. Physical Society.

[92]  David G Grier,et al.  Structure of optical vortices. , 2003, Physical review letters.

[93]  Yu Sun,et al.  Stiffness increase of red blood cells during storage , 2018, Microsystems & Nanoengineering.

[94]  H. Nussenzveig Cell membrane biophysics with optical tweezers , 2017, European Biophysics Journal.

[95]  Mincheng Zhong,et al.  Trapping red blood cells in living animals using optical tweezers , 2013, Nature Communications.

[96]  Bor-Wen Yang,et al.  Measuring micro-interactions between coagulating red blood cells using optical tweezers , 2010, Biomedical optics express.

[97]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[98]  J. Smith Erythrocyte Membrane: Structure, Function, and Pathophysiology , 1987, Veterinary pathology.

[99]  Herbert J Meiselman,et al.  Depletion-mediated red blood cell aggregation in polymer solutions. , 2002, Biophysical journal.

[100]  Graham M. Gibson,et al.  Optical tweezers: wideband microrheology , 2010, 1005.1401.

[101]  D. Mathur,et al.  Optical trapping in an absorbing medium: from optical tweezing to thermal tweezing. , 2012, Optics express.

[102]  C. Schneider Berichte der Bunsengesellschaft für Physikalische Chemie , 1967 .

[103]  A. Ashkin,et al.  Optical trapping and manipulation of single living cells using infra‐red laser beams , 1989 .

[104]  D. Mathur,et al.  Probing oxidative stress in single erythrocytes with Raman Tweezers. , 2010, Journal of photochemistry and photobiology. B, Biology.

[105]  K. Lee,et al.  Characterization at the individual cell level and in whole blood samples of shear stress preventing red blood cells aggregation. , 2016, Journal of biomechanics.

[106]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[107]  D. Grier,et al.  Optical tweezer arrays and optical substrates created with diffractive optics , 1998 .

[108]  F F Costa,et al.  Elastic properties of stored red blood cells from sickle trait donor units , 2003, Vox sanguinis.

[109]  Alexander V. Priezzhev,et al.  Measurement of interaction forces between red blood cells in aggregates by optical tweezers , 2012 .

[110]  Alireza Mashaghi,et al.  Atorvastatin treatment softens human red blood cells: an optical tweezers study. , 2018, Biomedical optics express.

[111]  S. Lane,et al.  Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. , 2006, Biophysical journal.

[112]  Daniel Erenso,et al.  Single cell ionization by a laser trap: a preliminary study in measuring radiation dose and charge in BT20 breast carcinoma cells. , 2016, Biomedical optics express.

[113]  Cornelia Denz,et al.  Holographic optical tweezers‐based in vivo manipulations in zebrafish embryos , 2017, Journal of biophotonics.

[114]  Alexander V. Priezzhev,et al.  Red blood cells interaction mediated by dextran macromolecules: in vitro study using diffuse light scattering technique and optical tweezers , 2019, Saratov Fall Meeting.

[115]  Sehyun Shin,et al.  Advances in the measurement of red blood cell deformability: A brief review , 2015 .

[116]  Charles P. Lin,et al.  Image-guided transplantation of single cells in the bone marrow of live animals , 2017, Scientific Reports.

[117]  K. Greulich Selected applications of laser scissors and tweezers and new applications in heart research. , 2007, Methods in Cell Biology.

[118]  A. Ashkin,et al.  Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Biophysical journal.

[119]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[120]  Jonathan Leach,et al.  An optical trapped microhand for manipulating micron-sized objects. , 2006, Optics express.

[121]  Cornelia Denz,et al.  Multimodal in vivo blood flow sensing combining particle image velocimetry and optical tweezers-based blood steering , 2018, BiOS.

[122]  O. Baskurt,et al.  Erythrocyte aggregation: basic aspects and clinical importance. , 2013, Clinical hemorheology and microcirculation.

[123]  Subra Suresh,et al.  Large deformation of living cells using laser traps , 2004 .

[124]  R. S. Verma,et al.  Studies on erythrocytes in malaria infected blood sample with Raman optical tweezers. , 2011, Journal of biomedical optics.

[125]  Yunlong Sheng,et al.  One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells. , 2008, Optics express.

[126]  Carlos L. Cesar,et al.  Measuring electrical and mechanical properties of red blood cells with a double optical tweezers , 2006, SPIE Optics + Photonics.

[127]  S W Hell,et al.  Heating by absorption in the focus of an objective lens. , 1998, Optics letters.

[128]  Thomas J. Smart,et al.  Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique , 2016, Scientific Reports.

[129]  A. Ashkin,et al.  History of optical trapping and manipulation of small-neutral particle, atoms, and molecules , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[130]  Giorgio Volpe,et al.  Step-by-step guide to the realization of advanced optical tweezers , 2015, 1501.07894.

[131]  Giuseppe Pesce,et al.  Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders , 2008, Sensors.

[132]  Michael W. Berns,et al.  Interferometric optical tweezers , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[133]  T C Fisher,et al.  The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. , 2004, Biophysical journal.

[134]  J. Glückstad,et al.  Strategies for Optical Trapping in Biological Samples: Aiming at Microrobotic Surgeons , 2019, Laser & Photonics Reviews.

[135]  Igor Meglinski,et al.  Influence of interaction time on the red blood cell (dis)aggregation dynamics in vitro studied by optical tweezers , 2019, European Conference on Biomedical Optics.

[136]  K. Lee,et al.  Characterization of shear stress preventing red blood cells aggregation at the individual cell level: The temperature dependence. , 2017, Clinical hemorheology and microcirculation.

[137]  R. S. Verma,et al.  Raman spectroscopic investigations on optical trap induced deoxygenation of red blood cells , 2013 .

[138]  G. Molina-Terriza,et al.  Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds , 2016, Nature Physics.

[139]  V. Patlan,et al.  Optical tweezers technique for the study of red blood cells deformation ability , 2012 .

[140]  M W Berns,et al.  Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. , 1991, Cytometry.

[141]  D. Matthews,et al.  Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease. , 2013, Experimental hematology.

[142]  George Q. Daley,et al.  Biomechanical forces promote embryonic haematopoiesis , 2009, Nature.

[143]  Raoul Kopelman,et al.  Optical trapping near resonance absorption. , 2002, Applied optics.

[144]  Maria D Khokhlova,et al.  Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces. , 2012, Journal of biomedical optics.

[145]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[146]  J. Simeon,et al.  Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton. , 2001, Biophysical journal.

[147]  Matti Kinnunen,et al.  Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions , 2016, Journal of biomedical optics.

[148]  S. Jeney,et al.  Red Blood Cell Aging During Storage, Studied Using Optical Tweezers Experiment , 2015 .

[149]  Svetlana P. Kotova,et al.  Microobject manipulations using laser beams with nonzero orbital angular momentum , 2006 .

[150]  G. Whyte,et al.  High-throughput assessment of mechanical properties of stem cell derived red blood cells, toward cellular downstream processing , 2017, Scientific Reports.

[151]  Khyati Mohanty,et al.  Dynamics of Interaction of RBC with optical tweezers. , 2005, Optics express.

[152]  Nataliya R. Rovnyagina,et al.  Dextran adsorption onto red blood cells revisited: single cell quantification by laser tweezers combined with microfluidics. , 2018, Biomedical optics express.

[153]  F F Costa,et al.  Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease , 2003, European journal of haematology.

[154]  R Pool,et al.  Trapping with optical tweezers. , 1988, Science.

[155]  Jack Ng,et al.  Tailoring Optical Gradient Force and Optical Scattering and Absorption Force , 2017, Scientific Reports.

[156]  S. Chu,et al.  Quantitative measurements of force and displacement using an optical trap. , 1996, Biophysical journal.

[157]  Calibration of force detection for arbitrarily shaped particles in optical tweezers , 2018, Scientific Reports.

[158]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[159]  Ernst-Ludwig Florin,et al.  High precision and continuous optical transport using a standing wave optical line trap. , 2011, Optics express.