Animal snoRNAs and scaRNAs with exceptional structures

The overwhelming majority of small nucleolar RNAs (snoRNAs) fall into two clearly defined classes characterized by distinctive secondary structures and sequence motifs. A small group of diverse ncRNAs, however, shares the hallmarks of one or both classes of snoRNAs but differs substantially from the norm in some respects. Here, we compile the available information on these exceptional cases, conduct a thorough homology search throughout the available metazoan genomes, provide improved and expanded alignments, and investigate the evolutionary histories of these ncRNA families as well as their mutual relationships.

[1]  Peter F. Stadler,et al.  PLEXY: efficient target prediction for box C/D snoRNAs , 2011, Bioinform..

[2]  Zasha Weinberg,et al.  R2R - software to speed the depiction of aesthetic consensus RNA secondary structures , 2011, BMC Bioinformatics.

[3]  Christian Höner zu Siederdissen,et al.  Discriminatory power of RNA family models , 2010, Bioinform..

[4]  Peter F. Stadler,et al.  RNAsnoop: efficient target prediction for H/ACA snoRNAs , 2010, Bioinform..

[5]  Peter F. Stadler,et al.  Identification and Classification of Small RNAs in Transcriptome Sequence Data , 2010, Pacific Symposium on Biocomputing.

[6]  Xosé M Fernández-Suárez,et al.  Touring Ensembl: A practical guide to genome browsing , 2010, BMC Genomics.

[7]  Xiu-Jie Wang,et al.  Systematic identification and evolutionary features of rhesus monkey small nucleolar RNAs , 2010, BMC Genomics.

[8]  P. Stadler,et al.  Comparative analysis of eukaryotic U3 snoRNA , 2009, RNA biology.

[9]  Sonja J. Prohaska,et al.  Evolution of vault RNAs. , 2009, Molecular biology and evolution.

[10]  Jun Liu,et al.  Systematic identification and characterization of chicken (Gallus gallus) ncRNAs , 2009, Nucleic acids research.

[11]  Neena Mitter,et al.  Repertoire of Bovine miRNA and miRNA-Like Small Regulatory RNAs Expressed upon Viral Infection , 2009, PloS one.

[12]  J. Mattick,et al.  Small RNAs derived from snoRNAs. , 2009, RNA.

[13]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[14]  Liang-Hu Qu,et al.  Genome-wide analysis of chicken snoRNAs provides unique implications for the evolution of vertebrate snoRNAs , 2009, BMC Genomics.

[15]  Toralf Kirsten,et al.  Evolution of Spliceosomal snRNA Genes in Metazoan Animals , 2008, Journal of Molecular Evolution.

[16]  Sebastian Will,et al.  RNAalifold: improved consensus structure prediction for RNA alignments , 2008, BMC Bioinformatics.

[17]  Jürgen Brosius,et al.  Retroposed SNOfall--a mammalian-wide comparison of platypus snoRNAs. , 2008, Genome research.

[18]  Manolis Kellis,et al.  Conservation of small RNA pathways in platypus Material Supplemental , 2008 .

[19]  Robert J. Moore,et al.  A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. , 2008, Genome research.

[20]  Hui Zhou,et al.  Genomewide Analysis of Box C/D and Box H/ACA snoRNAs in Chlamydomonas reinhardtii Reveals an Extensive Organization Into Intronic Gene Clusters , 2008, Genetics.

[21]  N. Rajewsky,et al.  Discovering microRNAs from deep sequencing data using miRDeep , 2008, Nature Biotechnology.

[22]  Valery Shepelev,et al.  snoTARGET shows that human orphan snoRNA targets locate close to alternative splice junctions. , 2008, Gene.

[23]  Peter F. Stadler,et al.  SnoReport: computational identification of snoRNAs with unknown targets , 2008, Bioinform..

[24]  Chong-Jian Chen,et al.  A combined computational and experimental analysis of two families of snoRNA genes from Caenorhabditis elegans, revealing the expression and evolution pattern of snoRNAs in nematodes. , 2007, Genomics.

[25]  Rolf Backofen,et al.  Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering , 2007, PLoS Comput. Biol..

[26]  Gabriele Varani,et al.  The structure and function of small nucleolar ribonucleoproteins , 2007, Nucleic acids research.

[27]  Liang-Hu Qu,et al.  snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome , 2006, Nucleic acids research.

[28]  Jürgen Brosius,et al.  Evolution of small nucleolar RNAs in nematodes , 2006, Nucleic acids research.

[29]  Laurent Lestrade,et al.  snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..

[30]  Baoyan Bai,et al.  Organization of the Caenorhabditis elegans small non-coding transcriptome: genomic features, biogenesis, and expression. , 2005, Genome research.

[31]  R. Sorek,et al.  Transcription-mediated gene fusion in the human genome. , 2005, Genome research.

[32]  Todd M Lowe,et al.  A computational screen for mammalian pseudouridylation guide H/ACA RNAs. , 2006, RNA.

[33]  Jesse Stombaugh,et al.  Computer identification of snoRNA genes using a Mammalian Orthologous Intron Database , 2005, Nucleic acids research.

[34]  Sam Griffiths-Jones,et al.  RALEE--RNA ALignment Editor in Emacs , 2005, Bioinform..

[35]  J. Steitz,et al.  Guide RNAs with 5′ Caps and Novel Box C/D snoRNA-like Domains for Modification of snRNAs in Metazoa , 2004, Current Biology.

[36]  E. Bertrand,et al.  Human Box H/ACA Pseudouridylation Guide RNA Machinery , 2004, Molecular and Cellular Biology.

[37]  Christophe Dez,et al.  RNA structure and function in C/D and H/ACA s(no)RNPs. , 2004, Current opinion in structural biology.

[38]  Wayne A. Decatur,et al.  Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. , 2004, Nucleic acids research.

[39]  J. Gall The centennial of the Cajal body , 2003, Nature Reviews Molecular Cell Biology.

[40]  Tamás Kiss,et al.  A common sequence motif determines the Cajal body‐specific localization of box H/ACA scaRNAs , 2003, The EMBO journal.

[41]  Vincent Moulton,et al.  A Search for H/ACA SnoRNAs in Yeast Using MFE Secondary Structure Prediction , 2003, Bioinform..

[42]  X. Darzacq,et al.  A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. , 2002, Nucleic acids research.

[43]  A. Hüttenhofer,et al.  The expanding snoRNA world. , 2002, Biochimie.

[44]  Tamás Kiss,et al.  Cajal body‐specific small nuclear RNAs: a novel class of 2′‐O‐methylation and pseudouridylation guide RNAs , 2002, The EMBO journal.

[45]  A. Hüttenhofer,et al.  RNomics: an experimental approach that identifies 201 candidates for novel, small, non‐messenger RNAs in mouse , 2001, The EMBO journal.

[46]  T. Kiss,et al.  A small nucleolar guide RNA functions both in 2′‐O‐ribose methylation and pseudouridylation of the U5 spliceosomal RNA , 2001, The EMBO journal.

[47]  S. Eddy,et al.  A computational screen for methylation guide snoRNAs in yeast. , 1999, Science.

[48]  J. Steitz,et al.  Modification of U6 spliceosomal RNA is guided by other small RNAs. , 1998, Molecular cell.

[49]  R. Singer,et al.  The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization , 1998, The EMBO journal.

[50]  A. Matera,et al.  The U22 host gene (UHG): chromosomal localization of UHG and distribution of U22 small nucleolar RNA , 1997, Histochemistry and Cell Biology.

[51]  J. Ni,et al.  Small Nucleolar RNAs Direct Site-Specific Synthesis of Pseudouridine in Ribosomal RNA , 1997, Cell.

[52]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[53]  J. Steitz,et al.  A mammalian gene with introns instead of exons generating stable RNA products , 1996, Nature.

[54]  J. Steitz,et al.  Requirement for intron-encoded U22 small nucleolar RNA in 18S ribosomal RNA maturation. , 1994, Science.

[55]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[56]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .