Distribution of the error term for the number of lattice points inside a shifted circle

AbstractWe investigate the fluctuations inNα(R), the number of lattice pointsn∈Z2 inside a circle of radiusR centered at a fixed point α∈[0, 1)2. Assuming thatR is smoothly (e.g., uniformly) distributed on a segment 0≦R≦T, we prove that the random variable $$\frac{{N_\alpha (R) - \pi R^2 }}{{\sqrt R }}$$ has a limit distribution asT→∞ (independent of the distribution ofR), which is absolutely continuous with respect to Lebesgue measure. The densitypα(x) is an entire function ofx which decays, for realx, faster than exp(−|x|4−ε). We also obtain a lower bound on the distribution function $$P_\alpha (x) = \int_{ - \infty }^x {p_\alpha (y)} dy$$ which shows thatPα(−x) and 1−Pα(x) decay whenx→∞ not faster than exp(−x4+ε). Numerical studies show that the profile of the densitypα(x) can be very different for different α. For instance, it can be both unimodal and bimodal. We show that $$\int_{ - \infty }^\infty {xp_\alpha (x)} dx = 0$$ , and the variance $$D_\alpha = \int_{ - \infty }^\infty {x^2 p_\alpha (x)} dx$$ depends continuously on α. However, the partial derivatives ofDα are infinite at every rational point α∈Q2, soDα is analytic nowhere.

[1]  Y. Sinai,et al.  Some mathematical problems in the theory of quantum chaos , 1990 .

[2]  M. Berry,et al.  Semiclassical theory of spectral rigidity , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  A. E. Ingham,et al.  Two classical lattice point problems , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[5]  Godfrey H. Hardy,et al.  An introduction to the theory of numbers (5. ed.) , 1995 .

[6]  F. V. Atkinson,et al.  The Riemann zeta-function , 1950 .

[7]  M. Feingold,et al.  Energy-level statistics of integrable quantum systems. , 1985, Physical review letters.

[8]  R. Chapman SOME APPLICATIONS OF MODULAR FORMS (Cambridge Tracts in Mathematics 99) , 1992 .

[9]  J. Verbaarschot,et al.  Energy level statistics of integrable quantum systems. , 1986, Physical review letters.

[10]  Cheng,et al.  Statistics of energy levels in integrable quantum systems. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[11]  G. H. Hardy The Average Order of the Arithmetical Functions P(x) and δ(x) , 1917 .

[12]  Emil Grosswald,et al.  Representations of Integers as Sums of Squares , 1985 .

[13]  Y. Colin,et al.  Nombre de points entiers dans une famille homothétique de domaines de ${R}$ , 1977 .

[14]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[15]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[16]  David G. Kendall,et al.  ON THE NUMBER OF LATTICE POINTS INSIDE A RANDOM OVAL , 1948 .

[17]  I. P. Cornfeld Ergodic theory / I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai , 1982 .

[18]  P. Bleher On the distribution of the number of lattice points inside a family of convex ovals , 1992 .

[19]  Quasi-classical expansions and the problem of quantum chaos , 1991 .

[20]  Henryk Iwaniec,et al.  On the divisor and circle problems , 1988 .

[21]  D. R. Heath-Brown The distribution and moments of the error term in the Dirichlet divisor problem Acta Arith , 1992 .

[22]  J. L. Hafner New omega theorems for two classical lattice point problems , 1981 .

[23]  K. Chandrasekharan,et al.  Dirichlet’s divisor problem , 1970 .

[24]  M. Huxley Exponential sums and lattice points III , 2003 .