Culture medium pH influence on Gluconacetobacter physiology: Cellulose production rate and yield enhancement in presence of multiple carbon sources.

[1]  G. Boiteux,et al.  Two-step formation mechanism of Acetobacter cellulosic biofilm: synthesis of sparse and compact cellulose , 2016, Cellulose.

[2]  N. Abidi,et al.  Engineering of porous bacterial cellulose toward human fibroblasts ingrowth for tissue engineering , 2014 .

[3]  J. Catchmark,et al.  Structure characterization of native cellulose during dehydration and rehydration , 2014, Cellulose.

[4]  Athanasios Mantalaris,et al.  More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. , 2014, Macromolecular bioscience.

[5]  A. French Idealized powder diffraction patterns for cellulose polymorphs , 2014, Cellulose.

[6]  D. Venkappayya,et al.  An overview of citric acid production , 2013 .

[7]  Robin Zuluaga,et al.  Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. , 2012, Carbohydrate polymers.

[8]  Wankei Wan,et al.  Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup , 2011 .

[9]  Jing Liu,et al.  Screening of the common culture conditions affecting crystallinity of bacterial cellulose , 2011, Journal of Industrial Microbiology & Biotechnology.

[10]  Hui-Huang Chen,et al.  Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation , 2011 .

[11]  V. Popa,et al.  AMORPHOUS CELLULOSE - STRUCTURE AND CHARACTERIZATION , 2011 .

[12]  Attilio Converti,et al.  Biotechnological production of citric acid , 2010, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[13]  G. Huang,et al.  Microbial-growth inhibition during composting of food waste: effects of organic acids. , 2010, Bioresource technology.

[14]  R. Oswald,et al.  Distinct Modulations of Human Capsaicin Receptor by Protons and Magnesium through Different Domains* , 2010, The Journal of Biological Chemistry.

[15]  R. Singhal,et al.  Microbial Cellulose: Fermentative Production and Applications , 2009 .

[16]  M. Fukaya,et al.  Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. , 2008, International journal of food microbiology.

[17]  Yuzo Yamada,et al.  Genera and species in acetic acid bacteria. , 2008, International journal of food microbiology.

[18]  Peter Raspor,et al.  Biotechnological Applications of Acetic Acid Bacteria , 2008 .

[19]  T. N. Pattabiraman,et al.  Standardization of a colorimetric method for the determination of fructose using o-cresol: Sulphuric acid reagent , 1997, Indian Journal of Clinical Biochemistry.

[20]  K. Dubowski An o-toluidine method for body-fluid glucose determination. , 1962, Clinical chemistry.

[21]  P. Raspor,et al.  Biotechnological applications of acetic acid bacteria. , 2008, Critical reviews in biotechnology.

[22]  M. Palmgren,et al.  Protons and how they are transported by proton pumps , 2008, Pflügers Archiv - European Journal of Physiology.

[23]  E. Bååth,et al.  Comparison of factors limiting bacterial growth in different soils , 2007 .

[24]  S. Langenheder,et al.  The role of environmental and spatial factors for the composition of aquatic bacterial communities. , 2007, Ecology.

[25]  L. Hu,et al.  Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum , 2007, Journal of Industrial Microbiology & Biotechnology.

[26]  Atsuko Shimada,et al.  Effects of acetic acid on the rice gelatinization and pasting properties of rice starch during cooking , 2007 .

[27]  Igor Goryanin,et al.  Kinetic Model of Mitochondrial Krebs Cycle: Unraveling the Mechanism of Salicylate Hepatotoxic Effects , 2006, Journal of biological physics.

[28]  Pia Ädelroth Special issue on proton transfer in biological systems. , 2006 .

[29]  M. Fernandes,et al.  Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH , 2006 .

[30]  S. Horinouchi,et al.  Putative ABC Transporter Responsible for Acetic Acid Resistance in Acetobacter aceti , 2006, Applied and Environmental Microbiology.

[31]  P. Adelroth Special issue on proton transfer in biological systems. , 2006, Biochimica et biophysica acta.

[32]  C. Wiegand,et al.  Influence of protective agents for preservation of Gluconacetobacter xylinus on its cellulose production , 2006 .

[33]  S. Ehlers,et al.  Towards a comprehensive view of the bacterial cell wall. , 2005, Trends in microbiology.

[34]  R. Coico,et al.  Gram Staining , 2005, Current protocols in microbiology.

[35]  W. M. Ingledew,et al.  Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and/or acid toxicity? , 2004, Journal of Industrial Microbiology and Biotechnology.

[36]  S. Horinouchi,et al.  Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti. , 2004, FEMS microbiology letters.

[37]  J. Sugiyama,et al.  Allomorphs of native crystalline cellulose I evaluated by two equatoriald-spacings , 2001, Journal of Wood Science.

[38]  S. Hyun,et al.  Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process , 2003 .

[39]  K. Siebert,et al.  Validation of bacterial growth inhibition models based on molecular properties of organic acids. , 2003, International journal of food microbiology.

[40]  A. Schmidt,et al.  Determination of suspended particulate matter concentration from turbidity measurements: particle size effects and calibration procedures , 2003 .

[41]  H. Lee,et al.  Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. , 2003, Journal of microbiological methods.

[42]  I. Booth,et al.  Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. , 2002, Microbiology.

[43]  F. Lee,et al.  A thermotolerant and high acetic acid‐producing bacterium Acetobacter sp. I14–2 , 1999 .

[44]  M. Fukaya,et al.  Cellulose production by acetic acid-resistant Acetobacter xylinum , 1997 .

[45]  P. Hartwig,et al.  Flavor characteristics of lactic, malic, citric, and acetic acids at various pH levels , 1995 .

[46]  J. Sugiyama,et al.  Combined infrared and electron diffraction study of the polymorphism of native celluloses , 1991 .

[47]  S. Horinouchi,et al.  Cloning of genes responsible for acetic acid resistance in Acetobacter aceti , 1990, Journal of bacteriology.

[48]  P. Srere,et al.  Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. , 1985, The Journal of biological chemistry.

[49]  R. Rej,et al.  A study of the direct o-toluidine blood glucose determination. , 1973, Clinica chimica acta; international journal of clinical chemistry.

[50]  H. L. Bell Effect of low pH on the survival and emergence of aquatic insects , 1971 .

[51]  S. Hestrin,et al.  SYNTHESIS OF CELLULOSE BY ACETOBACTER XYLINUM VI , 1963, Journal of bacteriology.

[52]  M. Schramm,et al.  Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. , 1954, The Biochemical journal.

[53]  U. Linne,et al.  Microalgae as bioreactors for bioplastic production , 2011, Microbial cell factories.