The Boltzmann--Sinai Ergodic Hypothesis In Full Generality

In the ergodic theory of semi-dispersing billiards the Local Ergodic Theorem, proved by Chernov and Sinai in 1987, plays a central role. So far, all existing proofs of this theorem had to use an annoying global hypothesis, namely the almost sure hyperbolicity of singular orbits. (This is the so called Chernov--Sinai Ansatz.) Here we introduce some new geometric ideas to overcome this difficulty and liberate the proof from the tyranny of the Ansatz. The presented proof is a substantial generalization of my previous joint result with N. Chernov (which is a $2D$ result) to arbitrary dimensions. An important corollary of the presented ansatz-free proof of the Local Ergodic Theorem is finally completing the proof of the Boltzmann--Sinai Ergodic Hypothesis for hard ball systems in full generality.

[1]  Proof of the Ergodic Hypothesis for Typical Hard Ball Systems , 2002, math/0210280.

[2]  N. Chernov Statistical properties of the periodic Lorentz gas. Multidimensional case , 1994 .

[3]  D. Szász,et al.  The K-property of three billiard balls , 1991 .

[4]  D. Szász,et al.  Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus , 1989 .

[5]  The complete hyperbolicity of cylindric billiards , 1999, Ergodic Theory and Dynamical Systems.

[6]  Nikolai SergeevichHG Krylov,et al.  Works on the foundations of statistical physics , 1979 .

[7]  Dmitry Burago,et al.  Uniform estimates on the number of collisions in semi-dispersing billiards , 1998 .

[8]  Carlangelo Liverani,et al.  Ergodicity in Hamiltonian Systems , 1992, math/9210229.

[9]  N. Chernov,et al.  Nonuniformly hyperbolic K-systems are Bernoulli , 1996, Ergodic Theory and Dynamical Systems.

[10]  Hard ball systems are completely hyperbolic , 1997, math/9704229.

[11]  Conditional proof of the Boltzmann-Sinai ergodic hypothesis , 2006, math/0605358.

[12]  D. Szász,et al.  TheK-property of four billiard balls , 1992 .

[13]  How High-Dimensional Stadia Look Like , 1998 .

[14]  Yakov G. Sinai,et al.  Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls , 1987 .

[15]  Anatole Katok,et al.  Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dyanmical systems , 1994, Ergodic Theory and Dynamical Systems.

[16]  M. Brin Review: Anatole Katok and Jean-Marie Strelcyn, Invariant manifolds, entropy and billiards; smooth maps with singularities , 1988 .

[17]  Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems , 2000, math/0008241.

[18]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[19]  Anatole Katok,et al.  Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .

[20]  Nándor Simányi,et al.  The K-property ofN billiard balls II. Computation of neutral linear spaces , 1992 .

[21]  Nándor Simányi,et al.  The K-property ofN billiard balls I , 1992 .

[22]  A. Krámli,et al.  A “transversal” fundamental theorem for semi-dispersing billiards , 1990 .

[23]  D. Szász,et al.  Non-integrability of cylindric billiards and transitive Lie group actions , 2000, Ergodic Theory and Dynamical Systems.

[24]  N. D. Sz Hard ball systems are completely hyperbolic , 1999 .

[25]  D. Ornstein,et al.  On the Bernoulli nature of systems with some hyperbolic structure , 1998, Ergodic Theory and Dynamical Systems.

[26]  Y. Sinai Development Of Krylov’s Ideas , 1980 .

[27]  D. Szász,et al.  A “Transversal” Fundamental Theorem for semi-dispersing billiards , 1990 .

[28]  W. Browder,et al.  Annals of Mathematics , 1889 .

[29]  Jan Rehacek,et al.  Nowhere Dispersing 3D Billiards with Non-vanishing Lyapunov Exponents , 1997 .

[30]  N. Chernov,et al.  Multi-Dimensional Semi-Dispersing Billiards: Singularities and the Fundamental Theorem , 2002 .

[31]  L. Vaserstein On systems of particles with finite-range and/or repulsive interactions , 1979 .