Force transmission analyses with dimensionally homogeneous Jacobian matrices for parallel manipulators

To avoid the unit inconsistency problem in the conventional Jacobian matrix, new formulation of a dimensionally homogeneous inverse Jacobian matrix for parallel manipulators with a planar mobile platform by using three end-effector points was presented (Kim and Ryu, 2003). This paper presents force relationships between joint forces and Cartesian forces at the three End-Effector points. The derived force relationships can then be used for analyses of the input/output force transmission. These analyses, forward and inverse force transmission analyses, depend on the singular values of the derived unit consistent Jacobian matrix. Using the proposed force relationship, a numerical example is presented for actuator size design of a 3-RRR planar parallel manipulator.

[1]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[2]  Jean-Jacques E. Slotine,et al.  Robot analysis and control , 1988, Autom..

[3]  E. J. Haug,et al.  Computer aided kinematics and dynamics of mechanical systems. Vol. 1: basic methods , 1989 .

[4]  Clément Gosselin,et al.  Stiffness mapping for parallel manipulators , 1990, IEEE Trans. Robotics Autom..

[5]  C. Gosselin The optimum design of robotic manipulators using dexterity indices , 1992, Robotics Auton. Syst..

[6]  Keith L. Doty,et al.  A Theory of Generalized Inverses Applied to Robotics , 1993, Int. J. Robotics Res..

[7]  Kazuhiro Kosuge,et al.  Input/output force analysis of parallel link manipulators , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[8]  C. Melchiorri,et al.  Robot manipulability , 1995, IEEE Trans. Robotics Autom..

[9]  Clément Gosselin,et al.  Determination of the workspace of planar parallel manipulators with joint limits , 1996, Robotics Auton. Syst..

[10]  Jean-Pierre Merlet,et al.  Efficient estimation of the extremal articular forces of a parallel manipulator in a translation workspace , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[11]  Clément Gosselin,et al.  Workspaces of Planar Parallel Manipulators , 1998 .

[12]  L. W. Tsai,et al.  Robot Analysis: The Mechanics of Serial and Parallel Ma-nipulators , 1999 .

[13]  Han S. Kim,et al.  The kinetostatic capability analysis of robotic manipulators , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[14]  Han S. Kim,et al.  Forward/inverse force transmission capability analyses of fully parallel manipulators , 2001, IEEE Trans. Robotics Autom..

[15]  Jeha Ryu,et al.  New dimensionally homogeneous Jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators , 2003, IEEE Trans. Robotics Autom..

[16]  Kee-Bong Choi Kinematic analysis and optimal design of 3-PPR planar parallel manipulator , 2003 .

[17]  Jeong-Hyun Sohn,et al.  Matching of physical experiments and multibody dynamic simulation for large deformation problems , 2004 .

[18]  Nam-Gyu Park,et al.  Vibration of initially stressed beam with discretely spaced multiple elastic supports , 2004 .