Integrated multimodality microscope for accurate and efficient target-guided cryo-lamellae preparation

[1]  E. Tocheva,et al.  Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans , 2021, Current research in structural biology.

[2]  Tao Xu,et al.  WFS1 functions in ER export of vesicular cargo proteins in pancreatic β-cells , 2021, Nature Communications.

[3]  É. Piel,et al.  Integrated Cryo-Correlative Microscopy for Targeted Structural Investigation In Situ , 2021, Microscopy Today.

[4]  M. Brini,et al.  Quantification of organelle contact sites by split-GFP-based contact site sensors (SPLICS) in living cells , 2021, Nature Protocols.

[5]  Suliana Manley,et al.  Single-molecule localization microscopy , 2021, Nature Reviews Methods Primers.

[6]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[7]  J Kuba,et al.  Advanced cryo‐tomography workflow developments – correlative microscopy, milling automation and cryo‐lift‐out , 2020, Journal of microscopy.

[8]  A. Petcherski,et al.  The biology of lipid droplet-bound mitochondria. , 2020, Seminars in cell & developmental biology.

[9]  R. Strack Structures in situ , 2020, Nature Methods.

[10]  Abbas Shirinifard,et al.  Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells , 2019, Science.

[11]  D. Agard,et al.  Mind the gap: micro-expansion joints drastically decrease the bending of FIB-milled cryo-lamellae. , 2019, Journal of structural biology.

[12]  W. Prinz,et al.  The functional universe of membrane contact sites , 2019, Nature Reviews Molecular Cell Biology.

[13]  J. Whisstock,et al.  PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy , 2019, eLife.

[14]  G. A. Blab,et al.  Towards robust and versatile single nanoparticle fiducial markers for correlative light and electron microscopy , 2019, Journal of microscopy.

[15]  Dimitry Tegunov,et al.  Real-time cryo–EM data pre-processing with Warp , 2018, Nature Methods.

[16]  D. Kong,et al.  High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy , 2019, Nature Communications.

[17]  Junjie Hou,et al.  RNA-binding protein DDX1 is responsible for fatty acid-mediated repression of insulin translation , 2018, Nucleic acids research.

[18]  W. Xu,et al.  High-vacuum optical platform for cryo-CLEM (HOPE): A new solution for non-integrated multiscale correlative light and electron microscopy. , 2018, Journal of structural biology.

[19]  U. Kržič,et al.  The new 2D Superresolution mode for ZEISS Airyscan , 2017, Nature Methods.

[20]  Catherine M. Oikonomou,et al.  Cellular Electron Cryotomography: Toward Structural Biology In Situ. , 2017, Annual review of biochemistry.

[21]  C. Peddie,et al.  Correlative super-resolution fluorescence and electron microscopy using conventional fluorescent proteins in vacuo , 2017, Journal of structural biology.

[22]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[23]  Ke Xu,et al.  Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities. , 2017, Chemical reviews.

[24]  Allison Doerr,et al.  Cryo-electron tomography , 2016, Nature Methods.

[25]  Yannick Schwab,et al.  Intravital Correlative Microscopy: Imaging Life at the Nanoscale. , 2016, Trends in cell biology.

[26]  W. Baumeister,et al.  Cryo-Electron Tomography: Can it Reveal the Molecular Sociology of Cells in Atomic Detail? , 2016, Trends in cell biology.

[27]  Sjors H W Scheres,et al.  Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION , 2016, Nature Protocols.

[28]  A. Hyman,et al.  Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D Correlative Microscopy. , 2016, Biophysical journal.

[29]  W Wan,et al.  Cryo-Electron Tomography and Subtomogram Averaging. , 2016, Methods in enzymology.

[30]  Eva Nogales,et al.  A new protocol to accurately determine microtubule lattice seam location. , 2015, Journal of structural biology.

[31]  W. Baumeister,et al.  Cryo-focused Ion Beam Sample Preparation for Imaging Vitreous Cells by Cryo-electron Tomography. , 2015, Bio-protocol.

[32]  B. Giepmans,et al.  Correlated light and electron microscopy: ultrastructure lights up! , 2015, Nature Methods.

[33]  Yongdeng Zhang,et al.  Three-dimensional super-resolution protein localization correlated with vitrified cellular context , 2015, Scientific Reports.

[34]  Martin Schorb,et al.  Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity. , 2014, Ultramicroscopy.

[35]  Wolfgang Baumeister,et al.  Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling. , 2014, Ultramicroscopy.

[36]  K. Grünewald,et al.  High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers☆ , 2014, Ultramicroscopy.

[37]  Grant J. Jensen,et al.  Correlated cryogenic photoactivated localization microscopy and electron cryotomography , 2014, Nature Methods.

[38]  Huibert D Mansvelder,et al.  Optimal lens design and use in laser-scanning microscopy. , 2014, Biomedical optics express.

[39]  Shoh Asano,et al.  Robust membrane detection based on tensor voting for electron tomography. , 2014, Journal of structural biology.

[40]  M. Marko,et al.  Practical workflow for cryo focused-ion-beam milling of tissues and cells for cryo-TEM tomography. , 2014, Journal of structural biology.

[41]  W. Baumeister,et al.  Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. , 2013, Current opinion in structural biology.

[42]  V. Lučić,et al.  Cryo-electron tomography: The challenge of doing structural biology in situ , 2013, The Journal of cell biology.

[43]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[44]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[45]  Daniel Castaño-Díez,et al.  Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. , 2012, Journal of structural biology.

[46]  Michel Bornens,et al.  The Centrosome in Cells and Organisms , 2012, Science.

[47]  Daniel Baum,et al.  Automated segmentation of electron tomograms for a quantitative description of actin filament networks. , 2012, Journal of structural biology.

[48]  W. Baumeister,et al.  Cryo-electron tomography : the realization of a vision , 2012 .

[49]  Gregory A Gibson,et al.  Direct visualization of HIV-1 with correlative live-cell microscopy and cryo-electron tomography. , 2011, Structure.

[50]  Michael J. Sanderson,et al.  Off-axis parabolic optical relays: almost perfect imaging , 2011, International Commission for Optics.

[51]  Matthew West,et al.  ER Tubules Mark Sites of Mitochondrial Division , 2011, Science.

[52]  Abraham J Koster,et al.  Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. , 2009, European journal of cell biology.

[53]  J. Dubochet,et al.  Compression and crevasses in vitreous sections under different cutting conditions , 2008, Journal of microscopy.

[54]  Florian Beck,et al.  Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. , 2007, Journal of structural biology.

[55]  R. Schalek,et al.  Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy , 2007, Nature Methods.

[56]  T. Stearns,et al.  Microtubule-organizing centres: a re-evaluation , 2007, Nature Reviews Molecular Cell Biology.

[57]  J. Frank Three-Dimensional Electron Microscopy of Macromolecular Assemblies , 2006 .

[58]  R. Heintzmann Handbook of biological confocal microscopy , 2006 .

[59]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[60]  J. Dubochet,et al.  Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. , 2005, Journal of structural biology.

[61]  S. Munro,et al.  The PACT domain, a conserved centrosomal targeting motif in the coiled‐coil proteins AKAP450 and pericentrin , 2000, EMBO reports.

[62]  W. Baumeister,et al.  Perspectives of molecular and cellular electron tomography. , 1997, Journal of structural biology.

[63]  R. Leapman,et al.  Thickness measurement of hydrated and dehydrated cryosections by EELS , 1996, Microscopy research and technique.

[64]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[65]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[66]  D. H. Snyder,et al.  MICROTUBULES: EVIDENCE FOR 13 PROTOFILAMENTS , 1973, The Journal of cell biology.