Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics
暂无分享,去创建一个
[1] S. Lane. Mathematics, Form and Function , 1985 .
[2] Mikhail G. Katz,et al. Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.
[3] H. Jerome Keisler,et al. The Hyperreal Line , 1994 .
[4] R. Vaught,et al. Homogeneous Universal Models , 1962 .
[5] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[6] Shashi M. Srivastava,et al. A Course on Mathematical Logic , 2008, Universitext.
[7] A. Ostaszewski. TOPOLOGY AND BOREL STRUCTURE , 1976 .
[8] M. Machover. The Place of Nonstandard Analysis in Mathematics and in Mathematics Teaching* , 1993, The British Journal for the Philosophy of Science.
[9] W. A. J. Luxemburg,et al. Non-Standard Analysis: Lectures on A. Robinson's Theory of Infinitesimals and Infinitely Large Numbers , 1966 .
[10] W. Luxemburg. Addendum to “on the measurability of a function which occurs in a paper by A. C. Zaanen” , 1963 .
[11] K. Gödel. The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.
[12] A. Connes. Cyclic Cohomology, Noncommutative Geometry and Quantum Group Symmetries , 2004 .
[13] Concise survey of mathematical logic , 1977 .
[14] K. Barner. Fermats «adæquare» – und kein Ende? , 2011 .
[15] Mikhail G. Katz,et al. Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.
[16] J. Earman. Infinities, infinitesimals, and indivisibles: the leibnizian labyrinth , 1975 .
[17] J. Marquis. Abstract Mathematical Tools and Machines for Mathematics , 1997 .
[18] John L. Bell,et al. A course in mathematical logic , 1977 .
[19] Michael D. Resnik,et al. Mathematics as a science of patterns , 1997 .
[20] J. Christensen. Topology and Borel structure : descriptive topology and set theory with applications to functional analysis and measure theory , 1974 .
[21] E. B. Davies. TOWARDS A PHILOSOPHY OF REAL MATHEMATICS , 2011 .
[22] Kajsa Bråting,et al. A new look at E.G. Björling and the Cauchy sum theorem , 2007 .
[23] Saharon Shelah,et al. A Dichotomy for the number of Ultrapowers , 2010, J. Math. Log..
[24] Vieri Benci,et al. Non-Archimedean Probability , 2011, 1106.1524.
[25] V. Kanovei. THE SET OF ALL ANALYTICALLY DEFINABLE SETS OF NATURAL NUMBERS CAN BE DEFINED ANALYTICALLY , 1980 .
[26] Jerzy Loś,et al. Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .
[27] T. Skolem. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .
[28] G. Mokobodzki. Densite relative de deux potentiels comparables , 1970 .
[29] Carlo Proietti. Natural Numbers and Infinitesimals: A Discussion between Benno Kerry and Georg Cantor , 2008 .
[30] D. Jesseph,et al. Archimedes, Infinitesimals and the Law of Continuity: On Leibniz’s Fictionalism , 2008 .
[31] W. Luxemburg. On the measurability of a function which occurs in a paper by A.C. Zaanen , 1958 .
[32] A. Connes. Noncommutative geometry and reality , 1995 .
[33] H. Keisler. Elementary Calculus: An Infinitesimal Approach , 1976 .
[34] Edward Nelson. Internal set theory: A new approach to nonstandard analysis , 1977 .
[35] R. Hersh. What is Mathematics, Really? , 1998 .
[36] Paul R. Halmos,et al. I Want to Be A Mathematician: An Automathography , 1986 .
[37] Mikhail G. Katz,et al. A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.
[38] The nonstandard treatment of Hilbert's fifth problem , 1990 .
[39] R. Goldblatt. Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .
[40] R. Gorenflo,et al. Multi-index Mittag-Leffler Functions , 2014 .
[41] Mikhail G. Katz,et al. Cauchy's Continuum , 2011, Perspectives on Science.
[42] Martin Davis,et al. Applied Nonstandard Analysis , 1977 .
[43] Hide Ishiguro,et al. Leibniz's Philosophy of Logic and Language , 1972 .
[44] Mikhail G. Katz,et al. Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.
[45] W. A. J. Luxemburg. What Is Nonstandard Analysis , 1973 .
[46] G. Lakoff,et al. Where mathematics comes from : how the embodied mind brings mathematics into being , 2002 .
[47] A. Connes. Geometry from the spectral point of view , 1995 .
[48] Reuben Hersh,et al. What is Mathematics , 2000 .
[49] Vladimir Kanovei,et al. Undecidable hypotheses in Edward Nelson's internal set theory , 1991 .
[50] Anton Zeilinger,et al. Quantum Physics as a Science of Information , 2005 .
[51] Andreas Blass,et al. Consistency results about filters and the number of inequivalent growth types , 1989, Journal of Symbolic Logic.
[52] Alexandre V. Borovik,et al. An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals , 2012, Notre Dame J. Formal Log..
[53] Errett Bishop,et al. Review: H. Jerome Keisler, Elementary calculus , 1977 .
[54] K. Gödel. Consistency of the Continuum Hypothesis. (AM-3) , 1940 .
[55] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[56] Genkai Zhang,et al. Hankel operators and the Dixmier trace on strictly pseudoconvex domains , 2010, Documenta Mathematica.
[57] Joel David Hamkins,et al. THE SET-THEORETIC MULTIVERSE , 2011, The Review of Symbolic Logic.
[58] Paul R. Halmos,et al. I Want to be a Mathematician , 1985 .
[59] Saharon Shelah,et al. Can you take Solovay’s inaccessible away? , 1984 .
[60] Daniel Isaacson,et al. The reality of mathematics and the case of set theory , 2007 .
[61] M. Otte. Das Formale, das Soziale und das Subjektive : eine Einführung in die Philosophie und Didaktik der Mathematik , 1994 .
[62] M. Katz. A proof via the Seiberg-Witten moduli space of Donaldson's theorem on smooth 4-manifolds with definite intersection forms , 2012, 1207.6271.
[63] Paul B. Larson,et al. The filter Dichotomy and Medial Limits , 2009, J. Math. Log..
[64] A. Connes. Brisure de symétrie spontanée et géométrie du point de vue spectral , 1997 .
[65] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[66] Klaus Keimel,et al. Continuous Lattices and Domains: The Scott Topology , 2003 .
[67] Vladimir Kanovei,et al. Nonstandard Analysis, Axiomatically , 2004 .
[68] Mark A. Wilson. Frege: The Royal Road from Geometry , 1992 .
[69] Matthew Foreman,et al. The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set , 1991 .
[70] Robert Goldblatt,et al. Lectures on the hyperreals , 1998 .
[71] Traces on symmetrically normed operator ideals , 2011, 1108.2598.
[72] Toru Kawai,et al. Nonstandard Analysis by Axiomatic Method , 1983 .
[73] R. Solovay. A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .
[74] L. Hörmander. Linear Partial Differential Operators , 1963 .
[75] J. Smart,et al. The Nature of Physical Reality. , 1951 .
[76] Th. Skolem,et al. Peano's Axioms and Models of Arithmetic , 1955 .
[77] Henry Margenau. Book Reviews: The Nature of Physical Reality: A Philosophy of Modern Physics , 1950 .
[78] I. Durham. In search of continuity: thoughts of an epistemic empiricist , 2011, 1106.1124.
[79] Keith Devlin. PROPER FORCING(Lecture Notes in Mathematics, 940) , 1983 .
[80] Terence Tao,et al. Structure and randomness , 2008 .
[81] Theworkof Alain Connes. CLASSIFICATION OF INJECTIVE FACTORS , 1981 .
[82] R. L. Goodstein,et al. On the restricted ordinal theorem , 1944, Journal of Symbolic Logic.
[83] F. Sukochev,et al. Measure Theory in Noncommutative Spaces , 2010, 1009.3095.
[84] Frederik Herzberg. Internal laws of probability, generalized likelihoods and Lewis' infinitesimal chances–A response to Adam Elga , 2007, The British Journal for the Philosophy of Science.
[85] Janusz Pawlikowski,et al. The Hahn-Banach theorem implies the Banach-Tarski paradox , 1991 .
[86] Stewart Shapiro,et al. Philosophy of mathematics , 1997 .
[87] Ehud Hrushovski,et al. The Mordell-Lang conjecture for function fields , 1996 .
[88] P. Erdös,et al. An Isomorphism Theorem for Real-Closed Fields , 1955 .
[89] Ehud Hrushovski,et al. Stable group theory and approximate subgroups , 2009, 0909.2190.
[90] K. D. Stroyan,et al. Introduction to the theory of infinitesimals , 1976 .
[91] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[92] F. Stephan,et al. Set theory , 2018, Mathematical Statistics with Applications in R.
[93] P. Zsombor-Murray,et al. Elementary Mathematics from an Advanced Standpoint , 1940, Nature.
[94] A. Robinson. Non-standard analysis , 1966 .
[95] Stewart Shapiro,et al. Structure and Ontology , 1989 .
[96] F. Sukochev,et al. Noncommutative residues and a characterisation of the noncommutative integral , 2009, 0905.0187.
[97] Sylvia Wenmackers,et al. Fair infinite lotteries , 2010, Synthese.
[98] Philip Ehrlich,et al. The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .
[99] John L. Bell,et al. Models and Ultraproducts: An Introduction. , 1969 .
[100] N. Kalton,et al. Fully symmetric functionals on a Marcinkiewicz space are Dixmier traces , 2011 .
[101] Herbert Breger. The mysteries of adaequare: A vindication of fermat , 1994 .
[102] F. N. Cole. THE AMERICAN MATHEMATICAL SOCIETY. , 1910, Science.
[103] S. Shelah. Proper Forcing , 2001 .
[104] Philip Ehrlich,et al. The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.
[105] K. Gödel,et al. Review of Skolem's Über die Unmöglichkeit Einer Vollständigen Charakterisierung der Zahlenreihe Mittels Eines Endlichen Axiomensystems , 1990 .
[106] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[107] Kenneth Kunen,et al. Set Theory: An Introduction to Independence Proofs , 2010 .
[108] Eric T. Bell,et al. The Philosophy of Mathematics , 1950 .
[109] W. Rudin. Homogeneity Problems in the Theory of Čech Compactifications , 1956 .
[110] R. H.,et al. The Principles of Mathematics , 1903, Nature.
[111] Karel Hrbacek,et al. Axiomatic foundations for Nonstandard Analysis , 1978 .
[112] S. Shapiro. Philosophy of mathematics : structure and ontology , 1997 .
[113] Alain Connes. A Short survey of noncommutative geometry , 2000 .
[114] M. Schützenberger,et al. Triangle of Thoughts , 2001 .
[115] Calculus: A Marxist approach , 2009 .
[116] Isaac Goldbring,et al. Hilbert's Fifth Problem for Local Groups , 2007, 0708.3871.
[117] N. S. Barnett,et al. Private communication , 1969 .
[118] Ekkehard Kopp,et al. On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.
[119] P. Meyer,et al. Limites mediales, d'apres Mokobodzki , 1973 .
[120] K. Hofmann,et al. Continuous Lattices and Domains , 2003 .
[121] G. Lakoff,et al. Where Mathematics Comes From , 2000 .
[122] Saharon Shelah,et al. A definable nonstandard model of the reals , 2004, J. Symb. Log..
[123] T. Mormann. A place for pragmatism in the dynamics of reason , 2012 .
[124] F. Sukochev,et al. ζ-function and heat kernel formulae , 2011 .
[125] Spectral flow and Dixmier traces , 2002, math/0205076.
[126] Noncommutative Geometry Year 2000 , 2000, math/0011193.
[127] R. Remmert,et al. European Mathematical Society , 1994 .
[128] Mikhail G. Katz,et al. Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.
[129] E. Perkins. NONSTANDARD METHODS IN STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS , 1988 .
[130] Abraham Adolf Fraenkel. Einleitung in die Mengenlehre , 1919 .
[131] Mikhail G. Katz,et al. From discrete arithmetic to arithmetic of the continuum , 2013 .
[132] D. Potapov,et al. Measures from Dixmier traces and zeta functions , 2009, 0905.1172.
[133] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[134] Judith V. Grabiner,et al. The origins of Cauchy's rigorous calculus , 1981 .