Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics

We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model $${\mathcal{S}}$$ as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In $${\mathcal{S}}$$, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “virtual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnerable to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace $${-\hskip-9pt\int}$$ (featured on the front cover of Connes’ magnum opus) and the Hahn–Banach theorem, in Connes’ own framework. We also note an inaccuracy in Machover’s critique of infinitesimal-based pedagogy.

[1]  S. Lane Mathematics, Form and Function , 1985 .

[2]  Mikhail G. Katz,et al.  Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.

[3]  H. Jerome Keisler,et al.  The Hyperreal Line , 1994 .

[4]  R. Vaught,et al.  Homogeneous Universal Models , 1962 .

[5]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[6]  Shashi M. Srivastava,et al.  A Course on Mathematical Logic , 2008, Universitext.

[7]  A. Ostaszewski TOPOLOGY AND BOREL STRUCTURE , 1976 .

[8]  M. Machover The Place of Nonstandard Analysis in Mathematics and in Mathematics Teaching* , 1993, The British Journal for the Philosophy of Science.

[9]  W. A. J. Luxemburg,et al.  Non-Standard Analysis: Lectures on A. Robinson's Theory of Infinitesimals and Infinitely Large Numbers , 1966 .

[10]  W. Luxemburg Addendum to “on the measurability of a function which occurs in a paper by A. C. Zaanen” , 1963 .

[11]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Connes Cyclic Cohomology, Noncommutative Geometry and Quantum Group Symmetries , 2004 .

[13]  Concise survey of mathematical logic , 1977 .

[14]  K. Barner Fermats «adæquare» – und kein Ende? , 2011 .

[15]  Mikhail G. Katz,et al.  Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.

[16]  J. Earman Infinities, infinitesimals, and indivisibles: the leibnizian labyrinth , 1975 .

[17]  J. Marquis Abstract Mathematical Tools and Machines for Mathematics , 1997 .

[18]  John L. Bell,et al.  A course in mathematical logic , 1977 .

[19]  Michael D. Resnik,et al.  Mathematics as a science of patterns , 1997 .

[20]  J. Christensen Topology and Borel structure : descriptive topology and set theory with applications to functional analysis and measure theory , 1974 .

[21]  E. B. Davies TOWARDS A PHILOSOPHY OF REAL MATHEMATICS , 2011 .

[22]  Kajsa Bråting,et al.  A new look at E.G. Björling and the Cauchy sum theorem , 2007 .

[23]  Saharon Shelah,et al.  A Dichotomy for the number of Ultrapowers , 2010, J. Math. Log..

[24]  Vieri Benci,et al.  Non-Archimedean Probability , 2011, 1106.1524.

[25]  V. Kanovei THE SET OF ALL ANALYTICALLY DEFINABLE SETS OF NATURAL NUMBERS CAN BE DEFINED ANALYTICALLY , 1980 .

[26]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .

[27]  T. Skolem Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .

[28]  G. Mokobodzki Densite relative de deux potentiels comparables , 1970 .

[29]  Carlo Proietti Natural Numbers and Infinitesimals: A Discussion between Benno Kerry and Georg Cantor , 2008 .

[30]  D. Jesseph,et al.  Archimedes, Infinitesimals and the Law of Continuity: On Leibniz’s Fictionalism , 2008 .

[31]  W. Luxemburg On the measurability of a function which occurs in a paper by A.C. Zaanen , 1958 .

[32]  A. Connes Noncommutative geometry and reality , 1995 .

[33]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[34]  Edward Nelson Internal set theory: A new approach to nonstandard analysis , 1977 .

[35]  R. Hersh What is Mathematics, Really? , 1998 .

[36]  Paul R. Halmos,et al.  I Want to Be A Mathematician: An Automathography , 1986 .

[37]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[38]  The nonstandard treatment of Hilbert's fifth problem , 1990 .

[39]  R. Goldblatt Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .

[40]  R. Gorenflo,et al.  Multi-index Mittag-Leffler Functions , 2014 .

[41]  Mikhail G. Katz,et al.  Cauchy's Continuum , 2011, Perspectives on Science.

[42]  Martin Davis,et al.  Applied Nonstandard Analysis , 1977 .

[43]  Hide Ishiguro,et al.  Leibniz's Philosophy of Logic and Language , 1972 .

[44]  Mikhail G. Katz,et al.  Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.

[45]  W. A. J. Luxemburg What Is Nonstandard Analysis , 1973 .

[46]  G. Lakoff,et al.  Where mathematics comes from : how the embodied mind brings mathematics into being , 2002 .

[47]  A. Connes Geometry from the spectral point of view , 1995 .

[48]  Reuben Hersh,et al.  What is Mathematics , 2000 .

[49]  Vladimir Kanovei,et al.  Undecidable hypotheses in Edward Nelson's internal set theory , 1991 .

[50]  Anton Zeilinger,et al.  Quantum Physics as a Science of Information , 2005 .

[51]  Andreas Blass,et al.  Consistency results about filters and the number of inequivalent growth types , 1989, Journal of Symbolic Logic.

[52]  Alexandre V. Borovik,et al.  An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals , 2012, Notre Dame J. Formal Log..

[53]  Errett Bishop,et al.  Review: H. Jerome Keisler, Elementary calculus , 1977 .

[54]  K. Gödel Consistency of the Continuum Hypothesis. (AM-3) , 1940 .

[55]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[56]  Genkai Zhang,et al.  Hankel operators and the Dixmier trace on strictly pseudoconvex domains , 2010, Documenta Mathematica.

[57]  Joel David Hamkins,et al.  THE SET-THEORETIC MULTIVERSE , 2011, The Review of Symbolic Logic.

[58]  Paul R. Halmos,et al.  I Want to be a Mathematician , 1985 .

[59]  Saharon Shelah,et al.  Can you take Solovay’s inaccessible away? , 1984 .

[60]  Daniel Isaacson,et al.  The reality of mathematics and the case of set theory , 2007 .

[61]  M. Otte Das Formale, das Soziale und das Subjektive : eine Einführung in die Philosophie und Didaktik der Mathematik , 1994 .

[62]  M. Katz A proof via the Seiberg-Witten moduli space of Donaldson's theorem on smooth 4-manifolds with definite intersection forms , 2012, 1207.6271.

[63]  Paul B. Larson,et al.  The filter Dichotomy and Medial Limits , 2009, J. Math. Log..

[64]  A. Connes Brisure de symétrie spontanée et géométrie du point de vue spectral , 1997 .

[65]  Mikhail G. Katz,et al.  Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.

[66]  Klaus Keimel,et al.  Continuous Lattices and Domains: The Scott Topology , 2003 .

[67]  Vladimir Kanovei,et al.  Nonstandard Analysis, Axiomatically , 2004 .

[68]  Mark A. Wilson Frege: The Royal Road from Geometry , 1992 .

[69]  Matthew Foreman,et al.  The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set , 1991 .

[70]  Robert Goldblatt,et al.  Lectures on the hyperreals , 1998 .

[71]  Traces on symmetrically normed operator ideals , 2011, 1108.2598.

[72]  Toru Kawai,et al.  Nonstandard Analysis by Axiomatic Method , 1983 .

[73]  R. Solovay A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .

[74]  L. Hörmander Linear Partial Differential Operators , 1963 .

[75]  J. Smart,et al.  The Nature of Physical Reality. , 1951 .

[76]  Th. Skolem,et al.  Peano's Axioms and Models of Arithmetic , 1955 .

[77]  Henry Margenau Book Reviews: The Nature of Physical Reality: A Philosophy of Modern Physics , 1950 .

[78]  I. Durham In search of continuity: thoughts of an epistemic empiricist , 2011, 1106.1124.

[79]  Keith Devlin PROPER FORCING(Lecture Notes in Mathematics, 940) , 1983 .

[80]  Terence Tao,et al.  Structure and randomness , 2008 .

[81]  Theworkof Alain Connes CLASSIFICATION OF INJECTIVE FACTORS , 1981 .

[82]  R. L. Goodstein,et al.  On the restricted ordinal theorem , 1944, Journal of Symbolic Logic.

[83]  F. Sukochev,et al.  Measure Theory in Noncommutative Spaces , 2010, 1009.3095.

[84]  Frederik Herzberg Internal laws of probability, generalized likelihoods and Lewis' infinitesimal chances–A response to Adam Elga , 2007, The British Journal for the Philosophy of Science.

[85]  Janusz Pawlikowski,et al.  The Hahn-Banach theorem implies the Banach-Tarski paradox , 1991 .

[86]  Stewart Shapiro,et al.  Philosophy of mathematics , 1997 .

[87]  Ehud Hrushovski,et al.  The Mordell-Lang conjecture for function fields , 1996 .

[88]  P. Erdös,et al.  An Isomorphism Theorem for Real-Closed Fields , 1955 .

[89]  Ehud Hrushovski,et al.  Stable group theory and approximate subgroups , 2009, 0909.2190.

[90]  K. D. Stroyan,et al.  Introduction to the theory of infinitesimals , 1976 .

[91]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[92]  F. Stephan,et al.  Set theory , 2018, Mathematical Statistics with Applications in R.

[93]  P. Zsombor-Murray,et al.  Elementary Mathematics from an Advanced Standpoint , 1940, Nature.

[94]  A. Robinson Non-standard analysis , 1966 .

[95]  Stewart Shapiro,et al.  Structure and Ontology , 1989 .

[96]  F. Sukochev,et al.  Noncommutative residues and a characterisation of the noncommutative integral , 2009, 0905.0187.

[97]  Sylvia Wenmackers,et al.  Fair infinite lotteries , 2010, Synthese.

[98]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[99]  John L. Bell,et al.  Models and Ultraproducts: An Introduction. , 1969 .

[100]  N. Kalton,et al.  Fully symmetric functionals on a Marcinkiewicz space are Dixmier traces , 2011 .

[101]  Herbert Breger The mysteries of adaequare: A vindication of fermat , 1994 .

[102]  F. N. Cole THE AMERICAN MATHEMATICAL SOCIETY. , 1910, Science.

[103]  S. Shelah Proper Forcing , 2001 .

[104]  Philip Ehrlich,et al.  The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.

[105]  K. Gödel,et al.  Review of Skolem's Über die Unmöglichkeit Einer Vollständigen Charakterisierung der Zahlenreihe Mittels Eines Endlichen Axiomensystems , 1990 .

[106]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[107]  Kenneth Kunen,et al.  Set Theory: An Introduction to Independence Proofs , 2010 .

[108]  Eric T. Bell,et al.  The Philosophy of Mathematics , 1950 .

[109]  W. Rudin Homogeneity Problems in the Theory of Čech Compactifications , 1956 .

[110]  R. H.,et al.  The Principles of Mathematics , 1903, Nature.

[111]  Karel Hrbacek,et al.  Axiomatic foundations for Nonstandard Analysis , 1978 .

[112]  S. Shapiro Philosophy of mathematics : structure and ontology , 1997 .

[113]  Alain Connes A Short survey of noncommutative geometry , 2000 .

[114]  M. Schützenberger,et al.  Triangle of Thoughts , 2001 .

[115]  Calculus: A Marxist approach , 2009 .

[116]  Isaac Goldbring,et al.  Hilbert's Fifth Problem for Local Groups , 2007, 0708.3871.

[117]  N. S. Barnett,et al.  Private communication , 1969 .

[118]  Ekkehard Kopp,et al.  On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.

[119]  P. Meyer,et al.  Limites mediales, d'apres Mokobodzki , 1973 .

[120]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[121]  G. Lakoff,et al.  Where Mathematics Comes From , 2000 .

[122]  Saharon Shelah,et al.  A definable nonstandard model of the reals , 2004, J. Symb. Log..

[123]  T. Mormann A place for pragmatism in the dynamics of reason , 2012 .

[124]  F. Sukochev,et al.  ζ-function and heat kernel formulae , 2011 .

[125]  Spectral flow and Dixmier traces , 2002, math/0205076.

[126]  Noncommutative Geometry Year 2000 , 2000, math/0011193.

[127]  R. Remmert,et al.  European Mathematical Society , 1994 .

[128]  Mikhail G. Katz,et al.  Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.

[129]  E. Perkins NONSTANDARD METHODS IN STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS , 1988 .

[130]  Abraham Adolf Fraenkel Einleitung in die Mengenlehre , 1919 .

[131]  Mikhail G. Katz,et al.  From discrete arithmetic to arithmetic of the continuum , 2013 .

[132]  D. Potapov,et al.  Measures from Dixmier traces and zeta functions , 2009, 0905.1172.

[133]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[134]  Judith V. Grabiner,et al.  The origins of Cauchy's rigorous calculus , 1981 .