Assessment of calculation methods for efficiency of straight fins of rectangular profile

Abstract Fin efficiency evaluation of plate-fin surfaces in compact heat exchangers is done based on the idealizations of one-dimensional analysis, uniform thickness thin fins, uniform fin thermal conductivity, uniform heat transfer coefficients, uniform temperature ambient, and no temperature depression at the fin base. A critical assessment of these idealizations is presented. Whenever possible, additional quantitative new results are obtained to account for some of these effects. Relaxation of these idealizations will lower the value of ideal one-dimensional fin efficiency, but will have a relatively small effect, if the fin efficiency is above about 80 percent, based on the assessment in the paper. Some specific design recommendations are made for the determination of the fin efficiency for plate-fin heat exchangers.

[1]  Y. G. Tsuei,et al.  Two-dimensional rectangular fin with variable heat transfer coefficient , 1991 .

[2]  M. Ozisik Heat Transfer: A Basic Approach , 1984 .

[3]  D. E. Klett,et al.  The Effect of Thermal Conductivity and Base-Temperature Depression on Fin Effectiveness , 1972 .

[4]  Dwight C. Look Two-Dimensional Fin Performance: Bi (top surface) ≥ Bi (bottom surface) , 1988 .

[5]  R. Shah,et al.  Compact Heat Exchangers , 1990 .

[6]  Arthur David Snider,et al.  An Efficient Algorithm for Evaluating Arrays of Extended Surface , 1978 .

[7]  Ephraim M Sparrow,et al.  Temperature Depression at the Base of a Fin , 1970 .

[8]  Peter J. Heggs,et al.  The Effects of Dimensions on the Heat Flowrate through Extended Surfaces , 1980 .

[9]  N. Epstein,et al.  EFFECT OF UNIFORM FOULING DEPOSIT ON TOTAL EFFICIENCY OF EXTENDED HEAT TRANSFER SURFACES , 1978 .

[10]  H. Ünal Determination of the temperature distribution in an extended surface with a non-uniform heat transfer coefficient , 1985 .

[11]  R. K. Irey,et al.  Errors in the One-Dimensional Fin Solution , 1968 .

[12]  N. V. Suryanarayana Two-Dimensional Effects on Heat Transfer Rates From an Array of Straight Fins , 1977 .

[13]  H. Ünal Temperature distributions in fins with uniform and non-uniform heat generation and non-uniform heat transfer coefficient , 1987 .

[14]  A. Aziz,et al.  Perturbation Solution for Convecting Fin With Variable Thermal Conductivity , 1975 .

[15]  Derek B. Ingham,et al.  The Analysis of Fin Assembly Heat Transfer by a Series Truncation Method , 1982 .

[16]  J. E. Myers,et al.  Transport from extended surfaces , 1964 .

[17]  M. Manzoor Heat Flow Through Extended Surface Heat Exchangers , 1983 .

[18]  M. Avrami,et al.  Diffusion of Heat Through a Rectangular Bar and the Cooling and Insulating Effect of Fins. I. The Steady State , 1942 .

[19]  H. Barrow A note on frosting of heat pump evaporator surfaces , 1985 .

[20]  M. N. Özişik,et al.  Unified Analysis and Solutions of Heat and Mass Diffusion , 1984 .

[21]  W. Lau,et al.  Errors in One-Dimensional Heat Transfer Analysis in Straight and Annular Fins , 1973 .

[22]  J. Mistry,et al.  NUMERICAL AND EXACT MATHEMATICAL ANALYSES OF TWO-DIMENSIONAL RECTANGULAR COMPOSITE FINS , 1986 .

[23]  A. Aziz Perturbation solution for convective fin with internal heat generation and temperature dependent thermal conductivity , 1977 .

[24]  A. A. Sfeir,et al.  The Heat Balance Integral in Steady-State Conduction , 1976 .

[25]  D. P. Sekulic,et al.  Extended surface heat transfer , 1972 .

[26]  A. Kraus Analysis and evaluation of extended surface thermal systems , 1982 .

[27]  Ephraim M Sparrow,et al.  Effects of fin base-temperature depression in a multifin array , 1975 .

[28]  R. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[29]  R. M. Cotta,et al.  Improved One-Dimensional Fin Solutions , 1990 .

[30]  Ephraim M Sparrow,et al.  Experiments on a Three-Row Fin and Tube Heat Exchanger , 1976 .