Current approaches to waste polymer utilization and minimization: a review

[1]  Tao Zhang,et al.  Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. , 2008, Angewandte Chemie.

[2]  D. Simón,et al.  Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. , 2018, Waste management.

[3]  Meenakshi Sharma,et al.  The impact of incinerators on human health and environment , 2013, Reviews on environmental health.

[4]  Ulrich S Schubert,et al.  Plant oil renewable resources as green alternatives in polymer science. , 2007, Chemical Society reviews.

[5]  J. Heino,et al.  Evolution of collagen-based adhesion systems. , 2009, The international journal of biochemistry & cell biology.

[6]  M. Stelmachowski,et al.  Thermal and thermo-catalytic conversion of waste polyolefins to fuel-like mixture of hydrocarbons , 2012 .

[7]  D. Achilias Material Recycling - Trends and Perspectives , 2012 .

[8]  Changkun Liu,et al.  Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation , 2017 .

[9]  M. Meier Metathesis with Oleochemicals: New Approaches for the Utilization of Plant Oils as Renewable Resources in Polymer Science , 2009 .

[10]  M. Diez,et al.  Gas chromatographic study of the volatile products from co-pyrolysis of coal and polyethylene wastes. , 2001, Journal of chromatography. A.

[11]  Hui Chen,et al.  Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. , 2005, Angewandte Chemie.

[12]  Yusuf Yagci,et al.  Polymers from triglyceride oils , 2006 .

[13]  A. K. Panda,et al.  A review on tertiary recycling of high-density polyethylene to fuel. , 2011 .

[14]  A. Anderson,et al.  Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. , 1990, Microbiological reviews.

[15]  Nano-Integrated Suspended Polymeric Microfluidics (SPMF) Platform for Ultra-Sensitive Bio-Molecular Recognition of Bovine Growth Hormones , 2017, Scientific Reports.

[16]  Hang Hu,et al.  Adsorption Performance of Hollow Spherical Sludge Carbon Prepared from Sewage Sludge and Polystyrene Foam Wastes , 2015 .

[17]  Ning Wang,et al.  Relationship between seedling and mature vegetation on the hilly-gullied Loess Plateau , 2013, SpringerPlus.

[18]  E. Yousif,et al.  Photodegradation and photostabilization of polymers, especially polystyrene: review , 2013, SpringerPlus.

[19]  A. Aboulkas,et al.  Co-pyrolysis of oil shale and plastics: Influence of pyrolysis parameters on the product yields , 2012 .

[20]  Bimlesh Lochab,et al.  Sustainable Polymers Derived From Naturally Occurring Materials , 2012 .

[21]  S. Liao,et al.  Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface area and hierarchical porous structures for oxygen reduction , 2014 .

[22]  Firas Awaja,et al.  Recycling of PET , 2005 .

[23]  C. Pillai Challenges for Natural Monomers and Polymers: Novel Design Strategies and Engineering to Develop Advanced Polymers , 2010 .

[24]  Rolf Widmer,et al.  Global perspectives on e-waste , 2005 .

[25]  K. Aishwarya,et al.  Microwave Assisted Pyrolysis of Plastic Waste , 2016 .

[26]  Daan S. van Es,et al.  Rigid Biobased Building Blocks , 2013 .

[27]  P. Pirkonen,et al.  Ultrasonic depolymerization of aqueous carboxymethylcellulose. , 2004, Ultrasonics sonochemistry.

[28]  C. Alexander,et al.  Synthetic and biological polymers--merging the interface , 2004 .

[29]  D. R. Tyler,et al.  Photodegradable plastics: end-of-life design principles , 2010 .

[30]  Regina Palkovits,et al.  Isosorbide as a renewable platform chemical for versatile applications--quo vadis? , 2012, ChemSusChem.

[31]  Michael A. R. Meier,et al.  Plant oils: The perfect renewable resource for polymer science?! , 2011 .

[32]  A. Rodrigues,et al.  Insights into Oxidative Conversion of Lignin to High-Added-Value Phenolic Aldehydes , 2011 .

[33]  Y. Qian,et al.  A Mild Reduction Route to PTFE Degradation at Low Temperature , 2004 .

[34]  D. Achilias,et al.  Chemical Recycling of Poly(ethylene terephthalate) , 2007 .

[35]  Aimin Li,et al.  Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil. , 2010, Journal of hazardous materials.

[36]  Vasile I. Parvulescu,et al.  Sustainability metrics for succinic acid production: A comparison between biomass-based and petrochemical routes , 2015 .

[37]  Y. Qian,et al.  A chemical route from PTFE to amorphous carbon nanospheres in supercritical water. , 2004, Chemical communications.

[38]  Michael T. Postek,et al.  Cellulose nanocrystals the next big nano-thing? , 2008, NanoScience + Engineering.

[39]  S. Swan,et al.  Phthalates and other additives in plastics: human exposure and associated health outcomes , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  D. Deng,et al.  Trash to Treasure: Transforming Waste Polystyrene Cups into Negative Electrode Materials for Sodium Ion Batteries , 2015 .

[41]  R. Gross,et al.  Biodegradable polymers for the environment. , 2002, Science.

[42]  B. Caballero,et al.  Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. , 2012, Waste management.

[43]  Jeannette M. García,et al.  The future of plastics recycling , 2017, Science.

[44]  H. Yeganeh,et al.  Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor , 2013 .

[45]  A. Albertsson,et al.  New biodegradable polymers from renewable sources. High molecular weight poly(ester carbonate)s from succinic acid and 1,3-propanediol , 2000 .

[46]  J. Church,et al.  Environmentally sustainable fibers from regenerated protein. , 2009, Biomacromolecules.

[47]  Paul T. Williams,et al.  Influence of metal addition to Ni-based catalysts for the co-production of carbon nanotubes and hydrogen from the thermal processing of waste polypropylene , 2015 .

[48]  A. Samanta,et al.  Post-Combustion CO2 Capture Using Solid Sorbents: A Review , 2012 .

[49]  Sushil Adhikari,et al.  Hydrogen Membrane Separation Techniques , 2006 .

[50]  J. Baeyens,et al.  Recycling and recovery routes of plastic solid waste (PSW): a review. , 2009, Waste management.

[51]  Arno Behr,et al.  Improved utilisation of renewable resources: New important derivatives of glycerol , 2008 .

[52]  Tao Zhang,et al.  One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. , 2013, Accounts of chemical research.

[53]  Francis Gadala-Maria,et al.  Review: Recycling of nylon from carpet waste , 2001 .

[54]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[55]  M. I. Aranguren,et al.  A short review on novel biocomposites based on plant oil precursors , 2013 .

[56]  Chaodi Xu,et al.  Microporous adsorbents for CO2 capture - a case for microporous polymers? , 2014 .

[57]  Ramazan Demirboga,et al.  A new technique of processing for waste-expanded polystyrene foams as aggregates , 2009 .

[58]  Shiro Kobayashi,et al.  Biomacromolecules and Bio‐Related Macromolecules , 2003 .

[59]  D. M. Hoffman,et al.  Polymer blends as high explosive binders , 1986 .

[60]  A. Rodrigues,et al.  An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin , 2009 .

[61]  Azadeh Soroudi,et al.  Recycling of bioplastics, their blends and biocomposites: A review , 2013 .

[62]  V. Cádiz,et al.  Renewable polymeric materials from vegetable oils: a perspective , 2013 .

[63]  Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan , 2017, Scientific Reports.

[64]  G. Madras,et al.  Enzymatic and Thermal Degradation of Poly(epsilon-caprolactone), Poly(D,L-lactide), and Their Blends , 2004 .

[65]  J. Lemaire,et al.  Environmental biodegradation of polyethylene , 2003 .

[66]  A. Isayev,et al.  Blends of ultrasonically devulcanized and virgin carbon black filled NR , 2002 .

[67]  J. Kumar,et al.  A renewable waste material for the synthesis of a novel non-halogenated flame retardant polymer , 2011 .

[68]  J. K. Appiah,et al.  Use of waste plastic materials for road construction in Ghana , 2017 .

[69]  Linsong Zhang,et al.  Mesoporous carbonaceous materials prepared from used cigarette filters for efficient phenol adsorption and CO2 capture , 2015 .

[70]  H. Farag,et al.  A novel one-step synthesis for carbon-based nanomaterials from polyethylene terephthalate (PET) bottles waste , 2017, Journal of the Air & Waste Management Association.

[71]  Charlotte K. Williams,et al.  Polymers from Renewable Resources: A Perspective for a Special Issue of Polymer Reviews , 2008 .

[72]  G. Madras,et al.  Effect of benzoyl peroxide on the ultrasonic degradation of poly(vinyl acetate) , 2001 .

[73]  M. S. Farahat,et al.  New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) waste: a review , 2005 .

[74]  Paul T. Williams,et al.  Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. , 2014, Environmental science & technology.

[75]  Laurent Mialon,et al.  Polyalkylenehydroxybenzoates (PAHBs): biorenewable aromatic/aliphatic polyesters from lignin. , 2011, Macromolecular rapid communications.

[76]  C. Wilcox,et al.  Plastic waste inputs from land into the ocean , 2015, Science.

[77]  M. Nikrah,et al.  Microwave-assisted Polyurethane Bond Cleavage via Hydroglycolysis Process at Atmospheric Pressure , 2008 .

[78]  W. Deckwer,et al.  Biodegradation of polyesters containing aromatic constituents. , 2001, Journal of biotechnology.

[79]  Yongfa Zhu,et al.  Photocatalytic degradation of polystyrene plastic under fluorescent light. , 2003, Environmental science & technology.

[80]  Ying Zheng,et al.  A Review of Plastic Waste Biodegradation , 2005, Critical reviews in biotechnology.

[81]  Jérôme Lecomte,et al.  Chemo-enzymatic functionalization of gallic and vanillic acids: synthesis of bio-based epoxy resins prepolymers , 2012 .

[82]  Yongshang Lu,et al.  Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications. , 2009, ChemSusChem.

[83]  F. Sosulski,et al.  Phenolic acids in rapeseed and mustard , 1983 .

[84]  V. Sinha,et al.  Pet Waste Management by Chemical Recycling: A Review , 2010 .

[85]  G. Celik,et al.  Synthesis of carboxylated locust bean gum hydrogels by ionizing radiation , 2014 .

[86]  Mohamed Rehan Karim,et al.  A review of using waste and virgin polymer in pavement , 2012 .

[87]  E. S. Sanz-Pérez,et al.  An investigation of the textural properties of mesostructured silica-based adsorbents for predicting CO2 adsorption capacity , 2015 .

[88]  Y. Tokiwa,et al.  Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone)aerobic degrading microorganisms in different environments , 1993 .

[89]  Jin Kuk Kim,et al.  Novel polymer composites from waste ethylene-propylene-diene-monomer rubber by supercritical CO2 foaming technology , 2014, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[90]  S. Ghosh,et al.  Carbon Nanotubes as a Resourceful Product Derived from Waste Plastic—A Review , 2018, Waste Management and Resource Efficiency.

[91]  Chi-Wei Lo,et al.  Isolation and purification of bacterial poly(3-hydroxyalkanoates) , 2008 .

[92]  Y. Qian,et al.  Synthesis and characterization of larger diameter carbon nanotubes from catalytic pyrolysis of polypropylene , 2008 .

[93]  J. Pascault,et al.  Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review , 2010 .

[94]  Mohammad Rehan,et al.  Catalytic pyrolysis of plastic waste: A review , 2016 .

[95]  Angela C Kasper,et al.  Printed wiring boards for mobile phones: characterization and recycling of copper. , 2011, Waste management.

[96]  G. Price,et al.  Ultrasonic degradation of polymer solutions: 2. The effect of temperature, ultrasound intensity and dissolved gases on polystyrene in toluene , 1993 .

[97]  A. L. Musatov,et al.  Carbon crooked nanotube layers of polyethylene: Synthesis, structure and electron emission , 1998 .

[98]  Aimin Li,et al.  Adsorption of phenolic compounds from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent. , 2002, Chemosphere.

[99]  R. Francis,et al.  Recycling of Polymers: Methods, Characterization and Applications , 2016 .

[100]  Giridhar Madras,et al.  Ultrasonic degradation of polybutadiene and isotactic polypropylene , 2004 .

[101]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[102]  Renlong Liu,et al.  Microwave-assisted degradation of waste polyethyleneterephthalate (PET) at atmospheric pressure using silicon carbide as power modulator , 2011, 2011 International Conference on Remote Sensing, Environment and Transportation Engineering.

[103]  Paul T. Williams,et al.  Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques , 2012 .

[104]  S. Sekretár,et al.  Fractionation and Identification of Some Phenolics Extracted from Evening Primrose Seed Meal , 2018 .

[105]  H. Aydin,et al.  Aminated poly(vinyl chloride) solid state adsorbents with hydrophobic function for post-combustion CO2 capture , 2017 .

[106]  Tao Zhang,et al.  Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET , 2016 .

[107]  F. Abnisa,et al.  A review on pyrolysis of plastic wastes , 2016 .

[108]  Robert E. Dvorak,et al.  Plastics recycling: challenges and opportunities , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[109]  Recycling polymeric waste from electronic and automotive sectors into value added products , 2017, Frontiers of Environmental Science & Engineering.

[110]  M. Hakkarainen,et al.  Trash to Treasure : Microwave-Assisted Conversion of Polyethylene to Functional Chemicals , 2017 .

[111]  V. Pol,et al.  Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres. , 2010, Environmental science & technology.

[112]  S. Kabasci,et al.  Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources , 2008 .

[113]  Ping Chen,et al.  Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. , 2013, Journal of the American Chemical Society.

[114]  Sajid Shah,et al.  Low temperature conversion of plastic waste into light hydrocarbons. , 2010, Journal of hazardous materials.

[115]  Ayhan Demirbas,et al.  Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons , 2004 .

[116]  Junlong Liu,et al.  Converting waste expanded polystyrene into polymeric azo dyes containing the sulfonamide group , 2014 .

[117]  A. Gandini,et al.  From monomers to polymers from renewable resources: Recent advances , 2015 .

[118]  Zoran S. Petrović,et al.  Polyurethanes from Vegetable Oils , 2008 .

[119]  Jin Kuk Kim,et al.  Effects of waste ground rubber tire powder (WGRT) and chemical blowing agent content on the cell morphology and physicomechanical properties of injection‐molded polypropylene/WGRT foams , 2009 .

[120]  Kumar Virwani,et al.  Recyclable, Strong Thermosets and Organogels via Paraformaldehyde Condensation with Diamines , 2014, Science.

[121]  Laurent Mialon,et al.  Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid , 2010 .

[122]  P. Tiwari,et al.  Valorization of packaging plastic waste by slow pyrolysis , 2018 .

[123]  G. Zeeman,et al.  Pretreatments to enhance the digestibility of lignocellulosic biomass. , 2009, Bioresource technology.

[124]  C. Pillai,et al.  Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives , 2011 .

[125]  G. Madras,et al.  Effect of temperature on the ultrasonic degradation of polyacrylamide and poly(ethylene oxide) , 2004 .

[126]  R J Murphy,et al.  Biodegradable and compostable alternatives to conventional plastics , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[127]  Chunfei Wu,et al.  Carbon nanotubes synthetized from gaseous products of waste polymer pyrolysis and their application , 2016 .

[128]  Jin Kuk Kim,et al.  Dynamic reaction inside co‐rotating twin screw extruder. I. Truck tire model material/polypropylene blends , 2007 .

[129]  T. Tang,et al.  Catalytic pyrolysis of polypropylene to synthesize carbon nanotubes and hydrogen through a two-stage process , 2011 .

[130]  J. Lemaire,et al.  Photooxidation and biodegradation of commercial photodegradable polyethylenes , 1994 .

[131]  D. Nielsen,et al.  Styrene biosynthesis from glucose by engineered E. coli. , 2011, Metabolic engineering.

[132]  Anita Grozdanov,et al.  Natural Fiber Eco-Composites , 2007 .