A robust posterior preference decision-making approach to multiple response process design

Setting of process variables to meet required specification of quality characteristics is one of the important problems in quality control processes. In general, most industrial and production systems are dealing with several different responses and the problem is to simultaneously optimise these responses. To obtain the most satisfactory solution, a decision-makers (DM) preference on the trade-offs among the quality characteristics should be incorporated into the optimisation procedure. This study suggests a robust posterior preference articulation approach based on a non-dominated sorting genetic algorithm (NSGA-II) to optimise multiple responses. In order to minimise the variation in deviation of responses from targets, maximum and sum of deviations are taken into consideration. To investigate the performance of the suggested approach, a computational analysis on a real world chemical engineering example is performed. Results show the superiority of the proposed approach compared to the existing techniques.

[1]  Gary L. Hogg,et al.  Combining simulation and optimization to solve the multimachine interference problem , 1981 .

[2]  Robert D. Plante,et al.  Interactive Multicriteria Optimization for Multiple-Response Product and Process Design , 2003, Manuf. Serv. Oper. Manag..

[3]  M. Bashiri,et al.  Optimization of probabilistic multiple response surfaces , 2012 .

[4]  Young-Hyun Ko,et al.  A New Loss Function-Based Method for Multiresponse Optimization , 2005 .

[5]  Ching-Lai Hwang,et al.  Multiple Objective Decision Making , 1994 .

[6]  Robert D. Plante Multicriteria models for the allocation of design parameter targets , 1999, Eur. J. Oper. Res..

[7]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[8]  Kwang-Jae Kim,et al.  Optimizing multi-response surface problems: How to use multi-objective optimization techniques , 2005 .

[9]  Ali Salmasnia,et al.  Multiple response surface optimization with correlated data , 2013 .

[10]  Douglas C. Montgomery,et al.  Multiple response surface methods in computer simulation , 1977 .

[11]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[12]  G. Geoffrey Vining A Compromise Approach to Multiresponse Optimization , 1998 .

[13]  Jeffrey Horn,et al.  The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems , 2001, EMO.

[14]  Hung-Cheng Chen,et al.  Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution , 2005 .

[15]  Mahdi Bashiri,et al.  A general framework for multiresponse optimization problems based on goal programming , 2008, Eur. J. Oper. Res..

[16]  Zoran Miljković,et al.  An intelligent approach to robust multi-response process design , 2011 .

[17]  B. Jaumard,et al.  A multi-criteria tabu search approach to cell formation problems in group technology with multiple objectives , 1994 .

[18]  Chao-Ton Su,et al.  OPTIMIZING MULTI‐RESPONSE PROBLEMS IN THE TAGUCHI METHOD BY FUZZY MULTIPLE ATTRIBUTE DECISION MAKING , 1997 .

[19]  H. Kaiser The Application of Electronic Computers to Factor Analysis , 1960 .

[20]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[21]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[22]  S. Gilmour,et al.  Characterisation of colloidal gas aphrons for subsequent use for protein recovery , 1997 .

[23]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[24]  Genichi Taguchi,et al.  Introduction to quality engineering.... , 2014 .

[25]  Siba Sankar Mahapatra,et al.  Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding , 2010 .

[26]  Kwok-Leung Tsui Robust design optimization for multiple characteristic problems , 1999 .

[27]  Onur Köksoy,et al.  Multiresponse robust design: Mean square error (MSE) criterion , 2006, Appl. Math. Comput..

[28]  Dong-Hee Lee,et al.  A posterior preference articulation approach to multiresponse surface optimization , 2009, Eur. J. Oper. Res..

[29]  John W. Fowler,et al.  Quantitative Comparison of Approximate Solution Sets for Bi-criteria Optimization Problems , 2003, Decis. Sci..

[30]  Phen Chiak See,et al.  Using statistical Design of Experiment to decide the effective parameter values for a new hybrid ant colony algorithm , 2008, Int. J. Appl. Decis. Sci..

[31]  K. Miettinen,et al.  Interactive bundle-based method for nondifferentiable multiobjeective optimization: nimbus § , 1995 .

[32]  Reza Baradaran Kazemzadeh,et al.  A novel approach for optimization of correlated multiple responses based on desirability function and fuzzy logics , 2012, Neurocomputing.

[33]  Ipek Deveci Kocakoç,et al.  Using analytic hierarchy process to determine process economics in multivariate loss functions , 2008 .

[34]  In-Jun Jeong,et al.  D-STEM: a modified step method with desirability function concept , 2005, Comput. Oper. Res..

[35]  Dennis K. J. Lin,et al.  Optimization of multiple responses considering both location and dispersion effects , 2006, Eur. J. Oper. Res..

[36]  Shu-Kai S. Fan,et al.  Using simulation techniques to determine optimal operational region for multi-responses problems , 2009 .

[37]  Kwang-Jae Kim,et al.  A posterior preference articulation approach to dual-response-surface optimization , 2009 .

[38]  C. Su,et al.  Multi-response robust design by principal component analysis , 1997 .

[39]  Gerald W. Evans,et al.  Multicriteria design of manufacturing systems through simulation optimization , 1994 .

[40]  Kwang-Jae Kim,et al.  Interactive Desirability Function Approach to Multi-Response Surface Optimization , 2003 .

[41]  Mahdi Bashiri,et al.  A goal programming-TOPSIS approach to multiple response optimization using the concepts of non-dominated solutions and prediction intervals , 2011, Expert Syst. Appl..

[42]  Ful-Chiang Wu,et al.  Optimization of Correlated Multiple Quality Characteristics Using Desirability Function , 2004 .

[43]  Wanzhu Tu,et al.  Dual response surface optimization , 1995 .

[44]  Saurav Datta,et al.  Application of PCA-based hybrid Taguchi method for correlated multicriteria optimization of submerged arc weld: a case study , 2009 .

[45]  Jianbiao Pan,et al.  Finding and optimising the key factors for the multiple-response manufacturing process , 2009 .

[46]  Cem Safak Sahin,et al.  Design of genetic algorithms for topology control of unmanned vehicles , 2010, Int. J. Appl. Decis. Sci..

[47]  William T. Scherer,et al.  "The desirability function: underlying assumptions and application implications" , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[48]  Sergio Davalos,et al.  Bankruptcy classification of firms investigated by the US Securities and Exchange Commission: an evolutionary adaptive ensemble model approach , 2009, Int. J. Appl. Decis. Sci..

[49]  Marc Despontin,et al.  Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .

[50]  Shu-Kai S. Fan A Generalized Global Optimization Algorithm for Dual Response Systems , 2000 .

[51]  C George,et al.  A Balancing Act: Optimizing a Product's Properties , 1994 .

[52]  Gwo-Hshiung Tzeng,et al.  Extended VIKOR method in comparison with outranking methods , 2007, Eur. J. Oper. Res..

[53]  Ali H. Diabat,et al.  An evolutionary programming approach for solving the capacitated facility location problem with risk pooling , 2009, Int. J. Appl. Decis. Sci..

[54]  Anthony C. Atkinson,et al.  Multiresponse optimization with consideration of probabilistic covariates , 2011, Qual. Reliab. Eng. Int..

[55]  Jiju Antony,et al.  Multi‐response optimization in industrial experiments using Taguchi's quality loss function and principal component analysis , 2000 .

[56]  Joseph J. Pignatiello,et al.  STRATEGIES FOR ROBUST MULTIRESPONSE QUALITY ENGINEERING , 1993 .

[57]  Jiju Antony,et al.  Optimization of multiple responses using a fuzzy-rule based inference system , 2002 .

[58]  M. Hamada,et al.  Analyzing Experiments with Correlated Multiple Responses , 2001 .

[59]  In-Jun Jeong,et al.  An interactive desirability function method to multiresponse optimization , 2009, Eur. J. Oper. Res..

[60]  K. Ganesh,et al.  A hybrid model for sourcing selection with order quantity allocation with multiple objectives under fuzzy environment , 2009, Int. J. Appl. Decis. Sci..

[61]  Dennis K. J. Lin,et al.  Multiresponse systems optimization using a goal attainment approach , 2004 .

[62]  Loren Paul Rees,et al.  SEPARATING THE ART AND SCIENCE OF SIMULATION OPTIMIZATION: A KNOWLEDGE-BASED ARCHITECTURE PROVIDING FOR MACHINE LEARNING , 1993 .

[63]  Derek J. Pike,et al.  Empirical Model‐building and Response Surfaces. , 1988 .

[64]  Pekka Korhonen,et al.  Multiple criteria decision support - A review , 1992 .

[65]  Chiuh-Cheng Chyu,et al.  Optimization of robust design for multiple quality characteristics , 2004 .

[66]  A. Khuri,et al.  Simultaneous Optimization of Multiple Responses Represented by Polynomial Regression Functions , 1981 .

[67]  C. Hwang,et al.  Fuzzy Multiple Objective Decision Making: Methods And Applications , 1996 .

[68]  Dennis E. Smith An Empirical Investigation of Optimum-Seeking in the Computer Simulation Situation , 1973, Oper. Res..