Isogeometric analysis for time-fractional partial differential equations
暂无分享,去创建一个
[1] L. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communications.
[2] I. Turner,et al. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation , 2005 .
[3] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .
[4] Fawang Liu,et al. New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..
[5] Zhi‐zhong Sun,et al. A fully discrete difference scheme for a diffusion-wave system , 2006 .
[6] I. Podlubny. Fractional differential equations , 1998 .
[7] Bangti Jin,et al. An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.
[8] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[9] Jan S. Hesthaven,et al. A multi-domain spectral method for time-fractional differential equations , 2015, J. Comput. Phys..
[10] Alessandro Reali,et al. GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..
[11] Bangti Jin,et al. Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2016, SIAM J. Sci. Comput..
[12] Hong Wang,et al. Accuracy of Finite Element Methods for Boundary-Value Problems of Steady-State Fractional Diffusion Equations , 2017, J. Sci. Comput..
[13] George E. Karniadakis,et al. Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..
[14] Hong Wang,et al. Inhomogeneous Dirichlet Boundary-Value Problems of Space-Fractional Diffusion Equations and their Finite Element Approximations , 2014, SIAM J. Numer. Anal..
[15] Danping Yang,et al. A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations , 2015 .
[16] Weihua Deng,et al. Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..
[17] Jose L. Gracia,et al. Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..
[18] Fawang Liu,et al. Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation , 2015, Appl. Math. Comput..
[19] Yangquan Chen,et al. Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .
[20] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[21] Raytcho D. Lazarov,et al. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..
[22] Alfio Quarteroni,et al. Isogeometric analysis and proper orthogonal decomposition for parabolic problems , 2017, Numerische Mathematik.
[23] Hong Wang,et al. Fast finite volume methods for space-fractional diffusion equations , 2015 .
[24] Giancarlo Sangalli,et al. Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.
[25] Fawang Liu,et al. Finite element method for space-time fractional diffusion equation , 2015, Numerical Algorithms.
[26] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[27] Qingbiao Wu,et al. Proper orthogonal decomposition with SUPG-stabilized isogeometric analysis for reduced order modelling of unsteady convection-dominated convection-diffusion-reaction problems , 2019, J. Comput. Phys..
[28] Kassem Mustapha,et al. A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..
[29] Qingbiao Wu,et al. Quasi‐Toeplitz splitting iteration methods for unsteady space‐fractional diffusion equations , 2018, Numerical Methods for Partial Differential Equations.
[30] M. T. Cicero. FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .
[31] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[32] Zhongqiang Zhang,et al. Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations , 2016, J. Comput. Phys..
[33] Fawang Liu,et al. The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..
[34] R. Gorenflo,et al. Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .
[35] A. Quarteroni,et al. Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation , 2017 .