Isogeometric analysis for time-fractional partial differential equations

We consider isogeometric analysis to solve the time-fractional partial differential equations: fractional diffusion and diffusion-wave equations. Traditional spatial discretization for time-fractional models include finite differences, finte elements, spectral methods, etc. A novel method-isogeometric analysis is used for spatial discretization in this paper. The traditional L1 scheme and L2 scheme are used for time discretization of our models. Isogeometric analysis has potential advantages in exact geometry representations, efficient mesh generation, h- and k- refinements, and smooth basis functions. We show stability and a priori error estimates for spatial discretization and the space-time fully discrete scheme. A variety of numerical examples in 2d and 3d are provided to verify theory and show accuracy, efficiency, and convergence of isogeometric analysis based on B-splines and non-uniform rational B-splines.

[1]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[2]  I. Turner,et al.  Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation , 2005 .

[3]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[4]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[5]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[6]  I. Podlubny Fractional differential equations , 1998 .

[7]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[8]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[9]  Jan S. Hesthaven,et al.  A multi-domain spectral method for time-fractional differential equations , 2015, J. Comput. Phys..

[10]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[11]  Bangti Jin,et al.  Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2016, SIAM J. Sci. Comput..

[12]  Hong Wang,et al.  Accuracy of Finite Element Methods for Boundary-Value Problems of Steady-State Fractional Diffusion Equations , 2017, J. Sci. Comput..

[13]  George E. Karniadakis,et al.  Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..

[14]  Hong Wang,et al.  Inhomogeneous Dirichlet Boundary-Value Problems of Space-Fractional Diffusion Equations and their Finite Element Approximations , 2014, SIAM J. Numer. Anal..

[15]  Danping Yang,et al.  A Petrov–Galerkin finite element method for variable-coefficient fractional diffusion equations , 2015 .

[16]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[17]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[18]  Fawang Liu,et al.  Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation , 2015, Appl. Math. Comput..

[19]  Yangquan Chen,et al.  Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .

[20]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[21]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[22]  Alfio Quarteroni,et al.  Isogeometric analysis and proper orthogonal decomposition for parabolic problems , 2017, Numerische Mathematik.

[23]  Hong Wang,et al.  Fast finite volume methods for space-fractional diffusion equations , 2015 .

[24]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[25]  Fawang Liu,et al.  Finite element method for space-time fractional diffusion equation , 2015, Numerical Algorithms.

[26]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[27]  Qingbiao Wu,et al.  Proper orthogonal decomposition with SUPG-stabilized isogeometric analysis for reduced order modelling of unsteady convection-dominated convection-diffusion-reaction problems , 2019, J. Comput. Phys..

[28]  Kassem Mustapha,et al.  A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[29]  Qingbiao Wu,et al.  Quasi‐Toeplitz splitting iteration methods for unsteady space‐fractional diffusion equations , 2018, Numerical Methods for Partial Differential Equations.

[30]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[31]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[32]  Zhongqiang Zhang,et al.  Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations , 2016, J. Comput. Phys..

[33]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[34]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[35]  A. Quarteroni,et al.  Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation , 2017 .