Small‐scale convection in the D″ layer

[1] Small-scale convection has been suggested as a possible explanation for seismic heterogeneities in the D″ layer of the Earth's mantle. Recently developed scaling laws for convection with realistic viscosities allow quantitative assessment of this hypothesis. Large temperature and viscosity contrasts across the thermal boundary layer at the core-mantle boundary suggest that small-scale convection starts at the bottom of the thermal boundary layer and propagates upward before the thermal boundary layer as a whole becomes unstable. The convection boundary is likely to become a chemical boundary as a result of mixing within the convective layer. This implies that the D″ discontinuity can represent both convective and chemical boundary and that the presence or absence of small-scale convection can be responsible for the observed intermittent nature of the D″ discontinuity. Most lateral heterogeneities in the D″ layer are concentrated near the convection boundary, consistent with seismic data. The length scale of lateral temperature variations, the topography of the core-mantle boundary, and the viscosity of the D″ layer are in agreement with observational constraints. The thickness of the secondary thermal boundary layer formed at the bottom of the convective layer is similar to the thickness of the ultralow-velocity zone. The magnitude of lateral variations in temperature can only marginally be responsible for lateral variations in seismic velocities. Variations in the topography of the convection boundary and chemical heterogeneities are likely to be more important factors. A large seismic velocity drop in the ultralow-velocity zone cannot be explained by thermal effects alone and must be caused by other factors such as partial melting.

[1]  D. L. Anderson Theory of Earth , 2014 .

[2]  V. Solomatov Grain size-dependent viscosity convection and the thermal evolution of the Earth , 2001 .

[3]  J. Mitrovica,et al.  Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data , 2001, Nature.

[4]  D. Yamazaki,et al.  Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle , 2001 .

[5]  Michael Manga,et al.  Boundary-layer thickness and instabilities in Benard convection of a liquid with a temperature-dependent viscosity , 2001 .

[6]  R. Jeanloz,et al.  Sediments at the top of Earth's core. , 2000, Science.

[7]  S. Morse A double magmatic heat pump at the core-mantle boundary , 2000 .

[8]  Louis Moresi,et al.  Scaling of time‐dependent stagnant lid convection: Application to small‐scale convection on Earth and other terrestrial planets , 2000 .

[9]  R. Hilst,et al.  Shear wave speeds at the base of the mantle , 2000 .

[10]  L. Kellogg,et al.  Numerical models of a dense layer at the base of the mantle and implications for the geodynamics of D , 2000 .

[11]  R. Boehler High‐pressure experiments and the phase diagram of lower mantle and core materials , 2000 .

[12]  E. Garnero Heterogeneity of the Lowermost Mantle , 2000 .

[13]  L. Fleitout,et al.  A global geoid model with imposed plate velocities and partial layering , 1999 .

[14]  M. Gurnis,et al.  Evidence for a ubiquitous seismic discontinuity at the base of the mantle , 1999, Science.

[15]  M. Doin,et al.  Heat transport in stagnant lid convection with temperature‐ and pressure‐dependent Newtonian or non‐Newtonian rheology , 1999 .

[16]  A. Hofmeister,et al.  Mantle values of thermal conductivity and the geotherm from phonon lifetimes , 1999, Science.

[17]  S. Karato,et al.  High pressure elastic anisotropy of MgSiO3 perovskite and geophysical implications , 1998 .

[18]  Olivier Grasset,et al.  Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature‐dependent viscosity: Implications for planetary thermal evolution , 1998 .

[19]  J. Tromp,et al.  Is there a first-order discontinuity in the lowermost mantle? , 1998 .

[20]  Boehler,et al.  (Mg,Fe)SiO3-Perovskite Stability and Lower Mantle Conditions , 1998, Science.

[21]  Ulrich Hansen,et al.  On the Rayleigh number dependence of convection with a strongly temperature-dependent viscosity , 1998 .

[22]  P. Tackley,et al.  Generation of mega‐plumes from the core‐mantle boundary in a compressible mantle with temperature‐dependent viscosity , 1998 .

[23]  F. Pollitz,et al.  Viscosity of oceanic asthenosphere inferred from remote triggering of earthquakes , 1998, Science.

[24]  J. Gerald,et al.  Mineralogy and dynamics of a pyrolite lower mantle , 1998, Nature.

[25]  Thorne Lay,et al.  The core–mantle boundary layer and deep Earth dynamics , 1998, Nature.

[26]  R. Cohen,et al.  Diffusion in MgO at high pressure: Implications for lower mantle rheology , 1998 .

[27]  Wen,et al.  Ultra-Low velocity zones near the core-mantle boundary from broadband PKP precursors , 1998, Science.

[28]  Sylvaine Ferrachat,et al.  Regular vs. chaotic mantle mixing , 1998 .

[29]  J. Vidale,et al.  Evidence for partial melt at the core–mantle boundary north of Tonga from the strong scattering of seismic waves , 1998, Nature.

[30]  Sri Widiyantoro,et al.  Global seismic tomography: A snapshot of convection in the Earth: GSA Today , 1997 .

[31]  L. Kellogg Growing the Earth's D″ layer: Effect of density variations at the core‐mantle boundary , 1997 .

[32]  J. Revenaugh,et al.  Seismic Evidence of Partial Melt Within a Possibly Ubiquitous Low-Velocity Layer at the Base of the Mantle , 1997 .

[33]  C. Farnetani Excess temperature of mantle plumes: The role of chemical stratification across D″ , 1997 .

[34]  McSween Hy,et al.  Evidence for Life in a Martian Meteorite , 1997 .

[35]  C. Young,et al.  Scale lengths of shear velocity heterogeneity at the base of the mantle from S wave differential travel times , 1997 .

[36]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[37]  T. Lay,et al.  Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska , 1997 .

[38]  U. Christensen,et al.  Mantle convection and stability of depleted and undepleted continental lithosphere , 1997 .

[39]  A. Chopelas Thermal expansivity of lower mantle phases MgO and MgSiO3 perovskite at high pressure derived from vibrational spectroscopy , 1996 .

[40]  F. Guyot,et al.  Microscopic anharmonicity and equation of state of MgSiO3‐perovskite , 1996 .

[41]  D. Wolf,et al.  Deglacial land emergence and lateral upper-mantle heterogeneity in the Svalbard Archipelago—II. Extended results for high-resolution load models , 1996 .

[42]  E. Garnero,et al.  Seismic Evidence for Partial Melt at the Base of Earth's Mantle , 1996, Science.

[43]  Mrinal K. Sen,et al.  Evidence for anisotropy in the deep mantle beneath Alaska , 1996 .

[44]  P. Silver,et al.  Constraints from seismic anisotropy on the nature of the lowermost mantle , 1996, Nature.

[45]  S. Karato,et al.  High-temperature creep in fine-grained polycrystalline CaTiO3, an analogue material of (Mg, Fe)SiO3 perovskite , 1996 .

[46]  D. Helmberger,et al.  Localized boundary layer below the mid-Pacific velocity anomaly identified from a PcP precursor , 1995 .

[47]  D. Helmberger,et al.  A very slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific: evidence from core phases , 1995 .

[48]  P. Silver,et al.  Laboratory and seismological observations of lower mantle isotropy , 1995 .

[49]  Thorne Lay,et al.  The core-mantle boundary region , 1995 .

[50]  V. Solomatov,et al.  Scaling of temperature‐ and stress‐dependent viscosity convection , 1995 .

[51]  A. Davaille,et al.  Onset of thermal convection in fluids with temperature‐dependent viscosity: Application to the oceanic mantle , 1994 .

[52]  W. Fjeldskaar Viscosity and thickness of the asthenosphere detected from the Fennoscandian uplift , 1994 .

[53]  Walter H. F. Smith,et al.  An empirical thermal history of the Earth's upper mantle , 1994 .

[54]  N. Ribe,et al.  The global hotspot distribution and instability of D (double prime) , 1994 .

[55]  S. Grand Mantle shear structure beneath the Americas and surrounding oceans , 1994 .

[56]  P. Shearer,et al.  Lateral variations in D″ thickness from long‐period shear wave data , 1994 .

[57]  Ulrich Hansen,et al.  Mixing the Earth's mantle by thermal convection: A scale dependent phenomenon , 1994 .

[58]  H. Nataf,et al.  SEISMIC DISCONTINUITY AT THE TOP OF D : A WORLD-WIDE FEATURE ? , 1993 .

[59]  M. Weber P- and S-wave reflections from anomalies in the lowermost mantle , 1993 .

[60]  A. Davaille,et al.  Transient high-Rayleigh-number thermal convection with large viscosity variations , 1993, Journal of Fluid Mechanics.

[61]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[62]  C. Carrigan,et al.  Small-Scale Convective Instability and Upper Mantle Viscosity Under California , 1993, Science.

[63]  D. Yuen,et al.  Geophysical inferences of thermal‐chemical structures in the lower mantle , 1993 .

[64]  J. Vidale,et al.  Seismological mapping of fine structure near the base of the Earth's mantle , 1993, Nature.

[65]  Michael E. Wysession,et al.  The structure of the core‐mantle boundary from diffracted waves , 1992 .

[66]  T. Ahrens,et al.  Sound velocities at high pressure and temperature and their geophysical implications , 1992 .

[67]  S. Karato,et al.  Diffusion Creep in Perovskite: Implications for the Rheology of the Lower Mantle , 1992, Science.

[68]  F. Sigmundsson Post‐glacial rebound and asthenosphere viscosity in Iceland , 1991 .

[69]  D. McKenzie,et al.  Melt Generation by Plumes: A Study of Hawaiian Volcanism , 1991 .

[70]  R. Jeanloz,et al.  Earth's Core-Mantle Boundary: Results of Experiments at High Pressures and Temperatures , 1991, Science.

[71]  Norman H. Sleep,et al.  Hotspots and Mantle Plumes' Some Phenomenology , 1990 .

[72]  G. Davies,et al.  Ocean bathymetry and mantle convection: 1. Large‐scale flow and hotspots , 1988 .

[73]  David A. Yuen,et al.  Numerical simulations of thermal-chemical instabilities at the core–mantle boundary , 1988, Nature.

[74]  G. Schubert,et al.  Plume formation in the D″-layer and the roughness of the core–mantle boundary , 1987, Nature.

[75]  M. Gurnis,et al.  Interaction of mantle dregs with convection: Lateral heterogeneity at the core‐mantle boundary , 1986 .

[76]  A. Fowler Fast thermoviscous convection , 1985 .

[77]  U. Christensen Thermal evolution models for the Earth , 1985 .

[78]  R. Haberman,et al.  Nonlinear Cusped Caustics for Dispersive Waves , 1985 .

[79]  U. Christensen Instability of a hot boundary layer and initiation of thermo-chemical plumes , 1984 .

[80]  F. D. Stacey,et al.  The dynamical and thermal structure of deep mantle plumes , 1983 .

[81]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[82]  Dean S. Oliver,et al.  Onset of convection in a variable-viscosity fluid , 1982, Journal of Fluid Mechanics.

[83]  F. Richter,et al.  Parameterized thermal convection in a layered region and the thermal history of the Earth , 1981 .

[84]  D. Stevenson,et al.  Models of the Earth's Core , 1981, Science.

[85]  W. Peltier,et al.  Mantle plumes and the thermal stability of the D″ layer , 1980 .

[86]  Donald L. Turcotte,et al.  On the thermal evolution of the earth , 1980 .

[87]  P. Hamilton,et al.  Geochemical modeling of mantle differentiation and crustal growth , 1979 .

[88]  S. Karato,et al.  High temperature creep of an orthorhombic perovskite—YAlO3 , 1999 .

[89]  D. Weidner,et al.  (ϖμ/ϖT)P of the lower mantle , 1996 .

[90]  Louise H. Kellogg,et al.  Mixing in the Mantle , 1992 .

[91]  I. Sacks,et al.  Asthenospheric Viscosity and Stress Diffusion: A Mechanism to Explain Correlated Earthquakes and Surface Deformations In Ne Japan , 1990 .

[92]  C. Young,et al.  The Core-Mantle Boundary , 1987 .