Running in the ALPs

[1]  Kiwoon Choi,et al.  Recent Progress in the Physics of Axions and Axion-Like Particles , 2020, Annual Review of Nuclear and Particle Science.

[2]  L. Luzio,et al.  Hunting for the CP violating ALP. , 2020 .

[3]  M. Giannotti,et al.  Enhanced Supernova Axion Emission and Its Implications. , 2020, Physical review letters.

[4]  T. Fischer,et al.  Heavy axion-like particles and core-collapse supernovae: constraints and impact on the explosion mechanism , 2020, Journal of Cosmology and Astroparticle Physics.

[5]  V. Gonçalves,et al.  Exclusive axionlike particle production by gluon – induced interactions in hadronic collisions , 2020, 2006.16716.

[6]  S. Trojanowski,et al.  Looking forward to test the KOTO anomaly with FASER , 2020, Physical Review D.

[7]  M. Mohammadi Najafabadi,et al.  New collider searches for axionlike particles coupling to gluons , 2020, Physical Review D.

[8]  J. Zupan,et al.  Looking forward to lepton-flavor-violating ALPs , 2020, Journal of High Energy Physics.

[9]  M. Chala,et al.  One-loop running of dimension-six Higgs-neutrino operators and implications of a large neutrino dipole moment , 2020, Journal of High Energy Physics.

[10]  F. Kahlhoefer,et al.  On the interplay between astrophysical and laboratory probes of MeV-scale axion-like particles , 2020, Journal of High Energy Physics.

[11]  S. C. Inan,et al.  A search for axion-like particles in light-by-light scattering at the CLIC , 2020, Journal of High Energy Physics.

[12]  M. Giannotti,et al.  The landscape of QCD axion models , 2020, Physics Reports.

[13]  M. Rangel,et al.  Production of axionlike particles in PbPb collisions at the LHC, HE–LHC and FCC: A phenomenological analysis , 2020, 2002.06027.

[14]  J. Zupan,et al.  Quark flavor phenomenology of the QCD axion , 2020, 2002.04623.

[15]  A. Vicente,et al.  High-energy constraints from low-energy neutrino nonstandard interactions , 2019, Physical Review D.

[16]  O. Sumensari,et al.  Hunting for ALPs with lepton flavor violation , 2019, Journal of High Energy Physics.

[17]  Z. Bern,et al.  Nonrenormalization and Operator Mixing via On-Shell Methods. , 2019, Physical review letters.

[18]  J. Jaeckel,et al.  Axions as a probe of solar metals , 2019, Physical Review D.

[19]  M. Neubert,et al.  Axionlike Particles, Lepton-Flavor Violation, and a New Explanation of a_{μ} and a_{e}. , 2019, Physical review letters.

[20]  T. Fischer,et al.  Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung , 2019, Journal of Cosmology and Astroparticle Physics.

[21]  M. B. Gavela,et al.  Nonresonant Searches for Axionlike Particles at the LHC. , 2019, Physical review letters.

[22]  C. Yue,et al.  Searching for axionlike particles at future ep colliders , 2019, Physical Review D.

[23]  A. Celis,et al.  Master formula for one-loop renormalization of bosonic SMEFT operators , 2019, 1904.07840.

[24]  J. C. Criado BasisGen: automatic generation of operator bases , 2019, The European Physical Journal C.

[25]  M. M. Najafabadi,et al.  New probes for axionlike particles at hadron colliders , 2019, Physical Review D.

[26]  M. B. Gavela,et al.  Flavor constraints on electroweak ALP couplings , 2019, The European Physical Journal C.

[27]  Felix Kling,et al.  FASER’s physics reach for long-lived particles , 2018, Physical Review D.

[28]  M. B. Gavela,et al.  Axion couplings to electroweak gauge bosons , 2018, The European Physical Journal C.

[29]  Martin Bauer,et al.  Axion-like particles at future colliders , 2018, The European Physical Journal C.

[30]  Jun Seok Lee Revisiting Supernova 1987A Limits on Axion-Like-Particles , 2018, 1808.10136.

[31]  Felix Kling,et al.  Axionlike particles at FASER: The LHC as a photon beam dump , 2018, Physical Review D.

[32]  N. Craig,et al.  The photophobic ALP , 2018, Journal of High Energy Physics.

[33]  R. Essig,et al.  Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle , 2018, Journal of High Energy Physics.

[34]  Peter Stoffer,et al.  Low-energy effective field theory below the electroweak scale: anomalous dimensions , 2017, Journal of High Energy Physics.

[35]  P. Stoffer,et al.  Low-energy effective field theory below the electroweak scale: operators and matching , 2017, Journal of High Energy Physics.

[36]  Martin Bauer,et al.  Collider probes of axion-like particles , 2017, 1708.00443.

[37]  Chan Beom Park,et al.  Minimal flavor violation with axion-like particles , 2017, Journal of High Energy Physics.

[38]  J. Zupan,et al.  Minimal axion model from flavor , 2017 .

[39]  Martin Bauer,et al.  LHC as an Axion Factory: Probing an Axion Explanation for (g-2)_{μ} with Exotic Higgs Decays. , 2017, Physical review letters.

[40]  Gauthier Durieux,et al.  Minimally extended SILH , 2017, 1703.10624.

[41]  M. B. Gavela,et al.  ALPs effective field theory and collider signatures , 2017, The European Physical Journal C.

[42]  J. Zupan,et al.  The Axiflavon , 2016, 1612.08040.

[43]  K. Hamaguchi,et al.  Flaxion: a minimal extension to solve puzzles in the standard model , 2016, Journal of High Energy Physics.

[44]  F. Lyonnet,et al.  PyR@TE 2: A Python tool for computing RGEs at two-loop , 2016, Comput. Phys. Commun..

[45]  H. K. Lou,et al.  Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions. , 2016, Physical review letters.

[46]  W. Marciano,et al.  Contributions of axionlike particles to lepton dipole moments , 2016, 1607.01022.

[47]  M. Nardecchia,et al.  On the structure of anomalous composite Higgs models , 2016, 1605.09647.

[48]  M. Neubert,et al.  Diphoton resonance from a warped extra dimension , 2016, 1603.05978.

[49]  Michael Spannowsky,et al.  Probing MeV to 90 GeV axion-like particles with LEP and LHC , 2015, 1509.00476.

[50]  C. Cheung,et al.  Nonrenormalization Theorems without Supersymmetry. , 2015, Physical review letters.

[51]  David E Kaplan,et al.  Cosmological Relaxation of the Electroweak Scale. , 2015, Physical review letters.

[52]  Michael J. Pivovaroff,et al.  Working Group Report: New Light Weakly Coupled Particles , 2013 .

[53]  M. Thumm,et al.  First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS) , 2013 .

[54]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[55]  C. Niebuhr,et al.  New limits on hidden photons from past electron beam dumps , 2012, 1209.6083.

[56]  F. Haug,et al.  Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas. , 2011, Physical review letters.

[57]  F. Haug,et al.  CAST search for sub-eV mass solar axions with 3He buffer gas , 2011, 1106.3919.

[58]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[59]  L. Rosenberg,et al.  Search for hidden sector photons with the ADMX detector. , 2010, Physical review letters.

[60]  J. Hartnett,et al.  Microwave cavity light shining through a wall optimization and experiment , 2010, 1003.0964.

[61]  P. Schuster,et al.  New Fixed-Target Experiments to Search for Dark Gauge Forces , 2009, 0906.0580.

[62]  A. Pomarol,et al.  Beyond the minimal composite Higgs model , 2009, 0902.1483.

[63]  G. Raffelt Astrophysical axion bounds , 2006, hep-ph/0611350.

[64]  A. Manohar,et al.  Renormalization of the vector current in QED , 2005, hep-th/0512187.

[65]  T. Hahn Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2000, hep-ph/0012260.

[66]  T. Hahn,et al.  Automatized One-Loop Calculations in 4 and D dimensions , 1998, hep-ph/9807565.

[67]  P. Nogueira Automatic Feynman graph generation , 1993 .

[68]  Howard Georgi,et al.  Manifesting the invisible axion at low energies , 1986 .

[69]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[70]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[71]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[72]  F. Wilczek Axions and family symmetry breaking , 1982 .

[73]  A. Davidson,et al.  Minimal Flavor Unification via Multigenerational Peccei-Quinn Symmetry , 1982 .

[74]  R. Mohapatra,et al.  Are there real goldstone bosons associated with broken lepton number , 1981 .

[75]  C. Woo P and T conservation in the presence of instantons , 1978 .

[76]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[77]  S. Weinberg A new light boson , 1978 .

[78]  R. Peccei,et al.  Constraints imposed by CP conservation in the presence of pseudoparticles , 1977 .

[79]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[80]  Kiwoon Choi,et al.  Recent progresses in physics of axions or axion-like particles , 2020 .