Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications

[1]  Thomas L. Bougher,et al.  A carbon nanotube optical rectenna. , 2015, Nature nanotechnology.

[2]  Martin Schmid,et al.  A new asymmetric Pseudo‐Voigt function for more efficient fitting of XPS lines , 2015 .

[3]  Xuedan Ma,et al.  Room-temperature single-photon generation from solitary dopants of carbon nanotubes. , 2015, Nature nanotechnology.

[4]  C. Beirnaert,et al.  Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response. , 2015, Nature nanotechnology.

[5]  A. Stacey,et al.  Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule-graphene interfaces. , 2015, Nanoscale.

[6]  F. L. Deepak,et al.  Advanced Transmission Electron Microscopy: Applications to Nanomaterials , 2015 .

[7]  O. Stéphan,et al.  Local TEM Spectroscopic Studies on Carbon- and Boron Nitride-Based Nanomaterials , 2015 .

[8]  Á. Rubio,et al.  Mechanically interlocked single-wall carbon nanotubes. , 2014, Angewandte Chemie.

[9]  S. Reich,et al.  Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities , 2014, Nano letters.

[10]  O. Stéphan,et al.  Atomic configuration of nitrogen-doped single-walled carbon nanotubes. , 2014, Nano letters.

[11]  Rafal Klajn,et al.  Spiropyran-based dynamic materials. , 2014, Chemical Society reviews.

[12]  Richard Martel,et al.  Giant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging , 2013, Nature Photonics.

[13]  YuHuang Wang,et al.  Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. , 2013, Nature chemistry.

[14]  S. Yadav,et al.  PDMS/MWCNT nanocomposite actuators using silicone functionalized multiwalled carbon nanotubes via nitrene chemistry , 2013 .

[15]  A. Setaro,et al.  Nanoplasmonic colloidal suspensions for the enhancement of the luminescent emission from single-walled carbon nanotubes , 2013, Nano Research.

[16]  S. Reich,et al.  Fermi energy shift in deposited metallic nanotubes: A Raman scattering study , 2013 .

[17]  Á. Mayoral,et al.  Spatially-resolved EELS analysis of antibody distribution on biofunctionalized magnetic nanoparticles. , 2013, ACS nano.

[18]  Mingdi Yan,et al.  Covalent functionalization of graphene with reactive intermediates. , 2013, Accounts of chemical research.

[19]  R. Kabiri,et al.  Preparation of hybrid nanomaterials by supramolecular interactions between dendritic polymers and carbon nanotubes , 2013 .

[20]  Nicola Marzari,et al.  Diameter Effect on the Sidewall Functionalization of Single‐Walled Carbon Nanotubes by Addition of Dichlorocarbene , 2012 .

[21]  James J. P. Stewart,et al.  Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters , 2012, Journal of Molecular Modeling.

[22]  H. Dai,et al.  Multifunctional in vivo vascular imaging using near-infrared II fluorescence , 2012, Nature Medicine.

[23]  S. Reich,et al.  Non‐Covalent Functionalization of Individual Nanotubes with Spiropyran‐Based Molecular Switches , 2012 .

[24]  J. Cho,et al.  Cycloaddition Reactions: A Controlled Approach for Carbon Nanotube Functionalization , 2012 .

[25]  S. Reich,et al.  Polyglycerol-derived amphiphiles for the solubilization of single-walled carbon nanotubes in water: a structure-property study. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  J. Maultzsch,et al.  Selective polycarboxylation of semiconducting single-walled carbon nanotubes by reductive sidewall functionalization. , 2011, Journal of the American Chemical Society.

[27]  Jae Whan Cho,et al.  Cycloaddition reactions: a controlled approach for carbon nanotube functionalization. , 2011, Chemistry.

[28]  P. Hermet,et al.  Charge Transfer Evidence between Carbon Nanotubes and Encapsulated Conjugated Oligomers , 2011 .

[29]  S. Maruyama,et al.  Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes , 2011, 1104.5062.

[30]  S. Blanc,et al.  Hybrid spiropyran–silica nanoparticles with a core-shell structure: sol–gel synthesis and photochromic properties , 2010 .

[31]  S. Reich,et al.  Polyglycerol-derived amphiphiles for single walled carbon nanotube suspension , 2010 .

[32]  Á. Rubio,et al.  The physical and chemical properties of heteronanotubes , 2010 .

[33]  Malcolm L. H. Green,et al.  Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. , 2010, Nature materials.

[34]  H. Wagenknecht,et al.  Synthesis of spiropyrans as building blocks for molecular switches and dyads. , 2010, The Journal of organic chemistry.

[35]  E. Simanek,et al.  Synthesis of odd generation triazine dendrimers using a divergent, macromonomer approach. , 2010, Organic letters.

[36]  Zhuang Liu,et al.  A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. , 2009, Nature nanotechnology.

[37]  P. Avouris,et al.  Gate-variable light absorption and emission in a semiconducting carbon nanotube. , 2009, Nano letters.

[38]  Hongkun He,et al.  Scalable Functional Group Engineering of Carbon Nanotubes by Improved One-Step Nitrene Chemistry , 2009 .

[39]  O. Stéphan,et al.  Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures. , 2008, Ultramicroscopy.

[40]  Jesse M. Kinder,et al.  Nonradiative Recombination of Excitons in Carbon Nanotubes Mediated by Free Charge Carriers , 2008, 0808.0737.

[41]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[42]  A. Zettl,et al.  A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. , 2008, Journal of the American Chemical Society.

[43]  M. Lazzeri,et al.  Doping in carbon nanotubes probed by Raman and transport measurements. , 2007, Physical review letters.

[44]  J. Tour,et al.  Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions , 2007, Science.

[45]  N. Marzari,et al.  Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. , 2006, Physical review letters.

[46]  Jun-Qian Li,et al.  Bond-curvature effect of sidewall [2+1] cycloadditions of single-walled carbon nanotubes : A new criterion to the adduct structures , 2006 .

[47]  L. Calliari,et al.  Measuring the energy of the graphite π + σ plasmon peak , 2006 .

[48]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[49]  J. Robertson,et al.  Phonon linewidths and electron-phonon coupling in graphite and nanotubes , 2005, cond-mat/0508700.

[50]  M. Adeli,et al.  Synthesis of barbell-like triblock copolymers, dendritic triazine-block-poly(ethylene glycol)-block-dendritic triazine and investigation of their solution behaviors , 2005 .

[51]  J. Maultzsch,et al.  Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment , 2005, cond-mat/0510427.

[52]  Louis E. Brus,et al.  The Optical Resonances in Carbon Nanotubes Arise from Excitons , 2005, Science.

[53]  Yi Xie,et al.  Synthesis of carbon nitride nanotubes with the C(3)N(4) stoichiometry via a benzene-thermal process at low temperatures. , 2004, Chemical communications.

[54]  Christian Thomsen,et al.  Carbon Nanotubes: Basic Concepts and Physical Properties , 2004 .

[55]  R. Haddon,et al.  Side-wall opening of single-walled carbon nanotubes (SWCNTs) by chemical modification: a critical theoretical study. , 2004, Angewandte Chemie.

[56]  Christian Thomsen,et al.  Raman scattering in carbon nanotubes , 2003, SPIE Optics + Photonics.

[57]  L. Ley,et al.  Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. , 2003, Journal of the American Chemical Society.

[58]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[59]  A. Hirsch Functionalization of single-walled carbon nanotubes. , 2002, Angewandte Chemie.

[60]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[61]  Andreas Hirsch,et al.  Sidewall Functionalization of Carbon Nanotubes. , 2001, Angewandte Chemie.

[62]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[63]  J. Wolff,et al.  Photochemistry of 2-azido-4,6-dichloro-s-triazine: matrix isolation of a strained cyclic carbodiimide containing four nitrogen atoms in a seven-membered ring , 1999 .

[64]  H. Chan,et al.  Platinum Deposition on Carbon Nanotubes via Chemical Modification , 1998 .

[65]  G. Whitesides,et al.  Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates , 1995 .

[66]  G. Whitesides,et al.  Self-Assembly through Hydrogen Bonding: Preparation and Characterization of Three New Types of Supramolecular Aggregates Based on Parallel Cyclic CA3.cntdot.M3 "Rosettes" , 1994 .

[67]  Christian Colliex,et al.  Spectrum-image: The next step in EELS digital acquisition and processing , 1989 .

[68]  Sven Tougaard,et al.  Quantitative analysis of the inelastic background in surface electron spectroscopy , 1988 .

[69]  J. A. Taylor,et al.  Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis , 1981 .

[70]  K. Matsui,et al.  The Thermal Reactions of Azido-1,3,5-triazines , 1974 .

[71]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[72]  H. L. Spell Infrared spectra of N-substituted aziridine compounds , 1967 .

[73]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[74]  C. Hart Carbonic acid azides , 2022 .