Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector

Cryogenic cooling of the test masses of interferometric gravitational wave detectors is a promising way to reduce thermal noise. However, cryogenic cooling limits the incident power to the test masses, which limits the freedom of shaping the quantum noise. Cryogenic cooling also requires short and thick suspension fibers to extract heat, which could result in the worsening of thermal noise. Therefore, careful tuning of multiple parameters is necessary in designing the sensitivity of cryogenic gravitational wave detectors. Here, we propose the use of particle swarm optimization to optimize the parameters of these detectors. We apply it for designing the sensitivity of the KAGRA detector, and show that binary neutron star inspiral range can be improved by 10%, just by retuning seven parameters of existing components. We also show that the sky localization of GW170817-like binaries can be further improved by a factor of 1.6 averaged across the sky. Our results show that particle swarm optimization is useful for designing future gravitational wave detectors with higher dimensionality in the parameter space.

[1]  A. Khalaidovski,et al.  Evaluation of heat extraction through sapphire fibers for the GW observatory KAGRA , 2014, 1401.2346.

[2]  R. Poggiani Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Frontier Research in Astrophysics – III — PoS(FRAPWS2018).

[3]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[4]  N. Mavalvala,et al.  Gravitational wave detector with cosmological reach , 2014, 1410.0612.

[5]  T.Narita,et al.  Construction of KAGRA: an Underground Gravitational Wave Observatory , 2017, 1712.00148.

[6]  Advanced LIGO , 2014, 1411.4547.

[7]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[8]  O. Miyakawa,et al.  Length sensing and control strategies for the LCGT interferometer , 2011, 1111.7147.

[9]  Takayuki Tomaru,et al.  MECHANICAL QUALITY FACTOR OF A CRYOGENIC SAPPHIRE TEST MASS FOR GRAVITATIONAL WAVE DETECTORS , 1999 .

[10]  A measurement of G with a cryogenic torsion pendulum , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Takayuki Tomaru,et al.  Status of the cryogenic payload system for the KAGRA detector , 2016 .

[12]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[13]  Yuri Levin Internal thermal noise in the LIGO test masses: A direct approach , 1998 .

[14]  R. Kumar,et al.  Reducing the suspension thermal noise of advanced gravitational wave detectors , 2012 .

[15]  Finn Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.

[16]  E. Hirose,et al.  Update on the development of cryogenic sapphire mirrors and their seismic attenuation system for KAGRA , 2014 .

[17]  I. Martin,et al.  Mechanical loss of a multilayer tantala/silica coating on a sapphire disk at cryogenic temperatures: Toward the KAGRA gravitational wave detector , 2014 .

[18]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[19]  E. Porter,et al.  Detecting compact galactic binaries using a hybrid swarm-based algorithm , 2015, 1509.08867.

[20]  S. Mohanty,et al.  Performance of Particle Swarm Optimization on the fully-coherent all-sky search for gravitational waves from compact binary coalescences , 2017, 1703.01521.

[21]  D. Martynov,et al.  Audio-band coating thermal noise measurement for Advanced LIGO with a multimode optical resonator , 2016, 1609.05595.

[22]  Michael N. Vrahatis,et al.  Particle Swarm Optimization: An efficient method for tracing periodic orbits in 3D galactic potentials , 2005, ArXiv.

[23]  Yan Wang,et al.  Particle swarm optimization and gravitational wave data analysis: Performance on a binary inspiral testbed , 2010 .

[24]  R. Adhikari,et al.  Gravitational Radiation Detection with Laser Interferometry , 2013, 1305.5188.

[25]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[26]  S. Ballmer,et al.  Direct approach for the fluctuation-dissipation theorem under nonequilibrium steady-state conditions , 2018, 1803.00585.

[27]  K. Kokeyama,et al.  Remarks on thermoelastic effects at low temperatures and quantum limits in displacement measurements , 2010 .

[28]  K. Kokeyama,et al.  Mirror actuation design for the interferometer control of the KAGRA gravitational wave telescope , 2017, 1709.02574.

[29]  A. Rüdiger,et al.  Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors , 1993 .

[30]  Astrophysics,et al.  Cosmological parameter estimation using Particle Swarm Optimization (PSO) , 2011, 1108.5600.

[31]  W. Anderson,et al.  Gravitational-wave physics and astronomy: An introduction to theory, experiment and data analysis , 2011 .

[32]  Jason D. Fiege,et al.  GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS , 2011, 1101.5803.

[33]  Yanbei Chen,et al.  Quantum noise in second generation, signal recycled laser interferometric gravitational wave detectors , 2001 .

[34]  Stephan Schiller,et al.  CRYOGENIC OPTICAL RESONATORS : A NEW TOOL FOR LASER FREQUENCY STABILIZATION AT THE 1 HZ LEVEL , 1997 .

[35]  B. Lantz,et al.  Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories , 2017 .

[36]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[37]  P. Saulson,et al.  Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.

[38]  M. Pinard,et al.  Thermoelastic effects at low temperatures and quantum limits in displacement measurements , 2001 .

[39]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[40]  Giovanni De Poli,et al.  Chapter 8 , 2019, Wide Neighborhoods.

[41]  Y. Rahmat-Samii,et al.  Boundary Conditions in Particle Swarm Optimization Revisited , 2007, IEEE Transactions on Antennas and Propagation.

[42]  Alberto J. Castro-Tirado,et al.  Multi-messenger Observations of a Binary Neutron Star , 2017 .

[43]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[44]  T. Akutsu,et al.  Progress on the cryogenic system for the KAGRA cryogenic interferometric gravitational wave telescope , 2014 .

[45]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[46]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[47]  K. Somiya,et al.  Parametric signal amplification to create a stiff optical bar , 2014, 1403.1222.

[48]  Martin M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[49]  D. Martynov,et al.  Prospects for Detecting Gravitational Waves at 5 Hz with Ground-Based Detectors. , 2017, Physical review letters.

[50]  Tomoki Isogai,et al.  Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors. , 2015, Physical review letters.

[51]  L. Kleybolte,et al.  Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation. , 2017, Physical review letters.

[52]  Takashi Uchiyama,et al.  Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector. , 2012, Physical review letters.

[53]  I. Martin,et al.  Silicon mirror suspensions for gravitational wave detectors , 2014 .

[54]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[55]  Andrey B. Matsko,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2001 .

[56]  Chunnong Zhao,et al.  Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement , 2016, Nature Physics.

[57]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[58]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[59]  Takayuki Tomaru,et al.  Measurement of the mechanical loss of a cooled reflective coating for gravitational wave detection , 2006 .

[60]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[61]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[62]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[63]  Jan Harms,et al.  Terrestrial Gravity Fluctuations , 2015, Living reviews in relativity.

[64]  K. Kuroda,et al.  Maximum heat transfer along a sapphire suspension fiber for a cryogenic interferometric gravitational wave detector , 2002 .

[65]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.