Step-edge-induced resistance anisotropy in quasi-free-standing bilayer chemical vapor deposition graphene on SiC

which results in macro steps � 10 nm in height. In this report, we study the qualitative and quantitative effects of SiC steps edges on the resistance of epitaxial graphene grown by chemical vapor deposition. We experimentally determine the value of step edge resistivity in hydrogen-intercalated QFS-bilayer graphene to be � 190Xlm for step height hS ¼ 10 nm and provide proof that it cannot originate from mechanical deformation of graphene but is likely to arise from lowered carrier concentration in the step area. Our results are confronted with the previously reported values of the step edge resistivity in monolayer graphene over SiC atomic steps. In our analysis, we focus on large-scale, statistical properties to foster the scalable technology of industrial graphene for electronics and sensor applications. V C 2014 AIP Publishing LLC .[ http://dx.doi.org/10.1063/1.4896581]

[1]  W. Strupinski,et al.  Formation mechanism of graphene buffer layer on SiC(0 0 0 1) , 2015 .

[2]  Xiaolong Chen,et al.  The correlation of epitaxial graphene properties and morphology of SiC (0001) , 2014 .

[3]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[4]  Jan Szmidt,et al.  Properties of Chemical Vapor Deposition Graphene Transferred by High-Speed Electrochemical Delamination , 2013 .

[5]  S. Datta,et al.  Heterogeneous integration of hexagonal boron nitride on bilayer quasi‐free‐standing epitaxial graphene and its impact on electrical transport properties , 2013 .

[6]  E. Pop,et al.  High-field electrical and thermal transport in suspended graphene. , 2013, Nano letters.

[7]  S. Shallcross,et al.  Buffer layer limited conductivity in epitaxial graphene on the Si face of SiC , 2012 .

[8]  W. Strupinski,et al.  Micro-Raman spectroscopy of graphene grown on stepped 4H-SiC (0001) surface , 2012 .

[9]  J. W. Baldwin,et al.  Bilayer graphene grown on 4H-SiC (0001) step-free mesas. , 2012, Nano letters.

[10]  J. Tersoff,et al.  Deformation and scattering in graphene over substrate steps. , 2012, Physical review letters.

[11]  H. Hiura,et al.  Role of atomic terraces and steps in the electron transport properties of epitaxial graphene grown on SiC , 2012 .

[12]  K. Novoselov,et al.  Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. , 2012, Nano letters.

[13]  G. Rubio‐Bollinger,et al.  Spatially resolved electronic inhomogeneities of graphene due to subsurface charges , 2011, 1111.0840.

[14]  J. Tersoff,et al.  Atomic-scale transport in epitaxial graphene. , 2012, Nature materials.

[15]  Phaedon Avouris,et al.  Charge trapping and scattering in epitaxial graphene , 2011 .

[16]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[17]  C. Dimitrakopoulos,et al.  Effect of SiC wafer miscut angle on the morphology and Hall mobility of epitaxially grown graphene , 2011 .

[18]  R. Murali,et al.  Conductance of Epitaxial Graphene Nanoribbons: Influence of Size Effects and Substrate Morphology , 2011 .

[19]  J. Krupka,et al.  Graphene epitaxy by chemical vapor deposition on SiC. , 2011, Nano letters.

[20]  C. Berger,et al.  Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide , 2011, Proceedings of the National Academy of Sciences.

[21]  Phaedon Avouris,et al.  Graphene: electronic and photonic properties and devices. , 2010, Nano letters.

[22]  I. Zozoulenko,et al.  Effect of short- and long-range scattering on the conductivity of graphene: Boltzmann approach vs tight-binding calculations , 2010, 1006.4306.

[23]  P. Campbell,et al.  Conductance anisotropy in epitaxial graphene sheets generated by substrate interactions. , 2010, Nano letters.

[24]  C. Berger,et al.  Electronic properties of epitaxial graphene , 2010 .

[25]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[26]  S. Sarma,et al.  Theory of carrier transport in bilayer graphene , 2009, 0912.0403.

[27]  P. Kim,et al.  Optical phonon mixing in bilayer graphene with a broken inversion symmetry , 2009 .

[28]  C. Coletti,et al.  Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. , 2009, Physical review letters.

[29]  P. Avouris,et al.  Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene , 2009, 0908.0749.

[30]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[31]  Michael F. Crommie,et al.  Origin of spatial charge inhomogeneity in graphene , 2009, 0902.4793.

[32]  P. Campbell,et al.  Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale. , 2009, Nano letters.

[33]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[34]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[35]  S Das Sarma,et al.  Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering. , 2008, Physical review letters.

[36]  Ralf Graupner,et al.  Raman spectra of epitaxial graphene on SiC(0001) , 2008 .

[37]  K. Emtsev,et al.  Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study , 2008 .

[38]  C. Ting,et al.  Electric Transport Theory of Dirac Fermions , 2008 .

[39]  Xu Du,et al.  Suspended Graphene: a bridge to the Dirac point , 2008, 0802.2933.

[40]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[41]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[42]  F. Guinea,et al.  Substrate-limited electron dynamics in graphene , 2007, 0711.1303.

[43]  S. Sarma,et al.  Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene , 2007, 0711.0754.

[44]  S. Das Sarma,et al.  Boltzmann transport and residual conductivity in bilayer graphene , 2007, 0711.0003.

[45]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[46]  S. Adam,et al.  Charged Impurity Scattering in Graphene , 2007, 0708.2408.

[47]  C. Ting,et al.  Electric transport theory of Dirac fermions in graphene , 2007, 0708.1569.

[48]  O. Vafek,et al.  Coulomb interaction, ripples, and the minimal conductivity of graphene. , 2007, Physical review letters.

[49]  A. H. Castro Neto,et al.  Graphene as an electronic membrane , 2007, cond-mat/0702562.

[50]  U. Starke,et al.  Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces , 2007 .

[51]  S. Sarma,et al.  Measurement of scattering rate and minimum conductivity in graphene. , 2007, Physical review letters.

[52]  D. S. Novikov,et al.  Numbers of donors and acceptors from transport measurements in graphene , 2007, 0707.1106.

[53]  T. Ohta,et al.  Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC , 2007, 0706.3764.

[54]  M. Katsnelson,et al.  Electron scattering on microscopic corrugations in graphene , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  J. Schliemann,et al.  Minimum electrical and thermal conductivity of graphene: a quasiclassical approach. , 2007, Physical review letters.

[56]  D. Novikov Elastic scattering theory and transport in graphene , 2007, 0706.1391.

[57]  F. D. Juan,et al.  Charge inhomogeneities due to smooth ripples in graphene sheets , 2007, 0706.0176.

[58]  S. Sarma,et al.  A self-consistent theory for graphene transport , 2007, Proceedings of the National Academy of Sciences.

[59]  M I Katsnelson,et al.  Intrinsic ripples in graphene. , 2007, Nature materials.

[60]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[61]  S. Sarma,et al.  Carrier transport in two-dimensional graphene layers. , 2006, Physical review letters.

[62]  K. Nomura,et al.  Quantum transport of massless Dirac fermions. , 2006, Physical review letters.

[63]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[64]  V. Fal’ko,et al.  Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene. , 2006, Physical review letters.

[65]  T. Ando Screening Effect and Impurity Scattering in Monolayer Graphene(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2006 .

[66]  K. Ziegler Robust transport properties in graphene. , 2006, Physical review letters.

[67]  C. A. Jeffrey,et al.  Highly ordered graphene for two dimensional electronics , 2006, cond-mat/0604206.

[68]  F. Guinea,et al.  Electronic properties of disordered two-dimensional carbon , 2005, cond-mat/0512091.

[69]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[70]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[71]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[72]  A. Marchand,et al.  Caracterisation de materiaux carbones par microspectrometrie Raman , 1984 .

[73]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .