Graphene–protein field effect biosensors: glucose sensing ☆

[1]  B. Trzaskowski,et al.  Molecular effects of encapsulation of glucose oxidase dimer by graphene , 2015 .

[2]  Hadi Shafiee,et al.  Emerging technologies for point-of-care management of HIV infection. , 2015, Annual review of medicine.

[3]  A. Stacey,et al.  Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule-graphene interfaces. , 2015, Nanoscale.

[4]  Utkan Demirci,et al.  Recent advances in micro/nanotechnologies for global control of hepatitis B infection. , 2015, Biotechnology advances.

[5]  Amit Singhal,et al.  Emerging technologies for monitoring drug-resistant tuberculosis at the point-of-care. , 2014, Advanced drug delivery reviews.

[6]  U. Demirci,et al.  Nanomechanical motion of Escherichia coli adhered to a surface. , 2014, Applied physics letters.

[7]  K. Novoselov,et al.  Exploring the Interface of Graphene and Biology , 2014, Science.

[8]  Utkan Demirci,et al.  Advances in Plasmonic Technologies for Point of Care Applications , 2014, Chemical reviews.

[9]  Emily B Hanhauser,et al.  Nanostructured Optical Photonic Crystal Biosensor for HIV Viral Load Measurement , 2014, Scientific Reports.

[10]  Toru Maekawa,et al.  Fluorinated Graphene Oxide; a New Multimodal Material for Biological Applications , 2013, Advanced materials.

[11]  S. Filipek,et al.  Cross-linked glucose oxidase clusters for biofuel cell anode catalysts , 2013, Biofabrication.

[12]  David C Klonoff,et al.  Do Currently Available Blood Glucose Monitors Meet Regulatory Standards? 1-Day Public Meeting in Arlington, Virginia , 2013, Journal of diabetes science and technology.

[13]  Amit Singhal,et al.  Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. , 2013, Biotechnology advances.

[14]  Savas Tasoglu,et al.  Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. , 2013, ACS nano.

[15]  L. Ocola,et al.  Direct Growth of Vertically-oriented Graphene for Field-Effect Transistor Biosensor , 2013, Scientific Reports.

[16]  Richard Novak,et al.  Rapid fabrication of nickel molds for prototyping embossed plastic microfluidic devices. , 2013, Lab on a chip.

[17]  P. Ajayan,et al.  Binary and Ternary Atomic Layers Built from Carbon, Boron, and Nitrogen , 2012, Advanced materials.

[18]  Tai Hyun Park,et al.  Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. , 2012, Nano letters.

[19]  Bong Jin Hong,et al.  Tunable biomolecular interaction and fluorescence quenching ability of graphene oxide: application to "turn-on" DNA sensing in biological media. , 2012, Small.

[20]  Arben Merkoçi,et al.  Graphene Oxide as an Optical Biosensing Platform , 2012, Advanced materials.

[21]  S. Brozik,et al.  Rational Redesign of Glucose Oxidase for Improved Catalytic Function and Stability , 2012, PloS one.

[22]  Utkan Demirci,et al.  Portable microfluidic chip for detection of Escherichia coli in produce and blood , 2012, International journal of nanomedicine.

[23]  Samuel K Sia,et al.  Commercialization of microfluidic point-of-care diagnostic devices. , 2012, Lab on a chip.

[24]  Utkan Demirci,et al.  Efficient on-chip isolation of HIV subtypes. , 2012, Lab on a chip.

[25]  Debabrata Dash,et al.  Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. , 2012, ACS nano.

[26]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[27]  Xiaoyun Qin,et al.  One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing , 2012 .

[28]  W. Qiu,et al.  Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. , 2011, Lab on a chip.

[29]  S. Bose,et al.  Recent advances in graphene-based biosensors. , 2011, Biosensors & bioelectronics.

[30]  Martin Pumera,et al.  Graphene in biosensing , 2011 .

[31]  L. Gervais,et al.  Microfluidic Chips for Point‐of‐Care Immunodiagnostics , 2011, Advanced materials.

[32]  Luke P. Lee,et al.  Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). , 2011, Lab on a chip.

[33]  Y. Ohno,et al.  Label-free biosensors based on aptamer-modified graphene field-effect transistors. , 2010, Journal of the American Chemical Society.

[34]  Shun Mao,et al.  Specific Protein Detection Using Thermally Reduced Graphene Oxide Sheet Decorated with Gold Nanoparticle‐Antibody Conjugates , 2010, Advanced materials.

[35]  P. Ajayan,et al.  Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films , 2010 .

[36]  Peng Chen,et al.  Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. , 2010, ACS nano.

[37]  Eun-Hyung Yoo,et al.  Glucose Biosensors: An Overview of Use in Clinical Practice , 2010, Sensors.

[38]  Filip Braet,et al.  Carbon nanomaterials in biosensors: should you use nanotubes or graphene? , 2010, Angewandte Chemie.

[39]  A. K. Gombert,et al.  Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus , 2010, Microbial cell factories.

[40]  Jan S Krouwer,et al.  A Review of Standards and Statistics Used to Describe Blood Glucose Monitor Performance , 2010, Journal of diabetes science and technology.

[41]  L. Gervais,et al.  Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. , 2009, Lab on a chip.

[42]  Thomas Laurell,et al.  Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. , 2009, Analytical chemistry.

[43]  L. Ananthanarayan,et al.  Glucose oxidase--an overview. , 2009, Biotechnology advances.

[44]  Chen-Zhong Li,et al.  Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications , 2009 .

[45]  T. Tachi,et al.  Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. , 2009, Analytical chemistry.

[46]  Liviu Nicu,et al.  Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward , 2008 .

[47]  N. Mohanty,et al.  Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. , 2008, Nano letters.

[48]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[49]  Joseph Wang Electrochemical glucose biosensors. , 2008, Chemical reviews.

[50]  O. Quaye,et al.  Role of Glu312 in binding and positioning of the substrate for the hydride transfer reaction in choline oxidase. , 2008, Biochemistry.

[51]  Roland Zengerle,et al.  The centrifugal microfluidic Bio-Disk platform , 2007 .

[52]  Pingzuo Li,et al.  Expression of Recombinant Proteins in Pichia Pastoris , 2007, Applied biochemistry and biotechnology.

[53]  P. Kim,et al.  Electric field effect tuning of electron-phonon coupling in graphene. , 2006, Physical review letters.

[54]  A. Undar,et al.  A microfluidic device for continuous, real time blood plasma separation. , 2006, Lab on a chip.

[55]  K. Markides,et al.  A hybrid poly(dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening , 2006, Biomedical microdevices.

[56]  D. Wong,et al.  Salivary diagnostics powered by nanotechnologies, proteomics and genomics. , 2006, Journal of the American Dental Association.

[57]  Randolph V. Lewis,et al.  Bionanotechnology : proteins to nanodevices , 2006 .

[58]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[59]  G. Narasimhan,et al.  Rational design of thermally stable proteins: relevance to bionanotechnology. , 2005, Journal of nanoscience and nanotechnology.

[60]  Eugene I Shakhnovich,et al.  Physics and evolution of thermophilic adaptation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Gabriel Zoldák,et al.  Irreversible Thermal Denaturation of Glucose Oxidase from Aspergillus niger Is the Transition to the Denatured State with Residual Structure* , 2004, Journal of Biological Chemistry.

[62]  T. S. Wong,et al.  Protein engineering in bioelectrocatalysis. , 2003, Current opinion in biotechnology.

[63]  H. Becker,et al.  Polymer microfluidic devices. , 2002, Talanta.