Molecular bricklaying II. Anion and chain length effects in bisbenzimidazolonium salts

The crystal structures of eleven salts of protonated cations of composition benzimidazole-(CH2)n-benzimidazole with n between 2 and 6 are reported. Three interactions dominate the crystal structures (in order of decreasing importance): hydrogen bonding with the benzimidazolonium cations acting as H-bond donors and the anions or solvent molecules as acceptors; stacking of the benzimidazolonium cations; an interaction between anion and the C2 atom of the protonated benzimidazole which is assumed to be electrostatic in origin. Changes in anion do not have a great effect, but as the length of the (CH2)n spacer increases stacking becomes less favoured.

[1]  D. Mingos,et al.  Multidimensional crystal engineering of bifunctional metal complexes containing complementary triple hydrogen bonds , 2010 .

[2]  K. Rissanen Halogen bonded supramolecular complexes and networks , 2008 .

[3]  H. Schmidbaur,et al.  A briefing on aurophilicity. , 2008, Chemical Society reviews.

[4]  G. Bernardinelli,et al.  The clash of the synthons: crystal structures of benzimidazole–alcohol–carboxylic acids , 2008 .

[5]  E. Dalcanale,et al.  Anion binding to resorcinarene-based cavitands: the importance of C-H...anion interactions. , 2008, Angewandte Chemie.

[6]  Christer B Aakeröy,et al.  Constructing, deconstructing, and reconstructing ternary supermolecules. , 2007, Chemical communications.

[7]  C. J. Matthews,et al.  Conformational effects in molecular tectons containing protonated benzimidazole cations , 2006 .

[8]  Robin Taylor,et al.  Mercury: visualization and analysis of crystal structures , 2006 .

[9]  J. Wuest,et al.  Engineering crystals by the strategy of molecular tectonics. , 2005, Chemical communications.

[10]  C. Janiak,et al.  Hydrogen-bonding, π-stacking and Cl−-anion–π interactions of linear bipyridinium cations with phosphate, chloride and [CoCl4]2− anions , 2005 .

[11]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[12]  M. W. Hosseini,et al.  Molecular tectonics: design of luminescent H-bonded molecular networks. , 2004, Chemical communications.

[13]  M. W. Hosseini Reflexion on molecular tectonics , 2004 .

[14]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[15]  A. Orpen,et al.  Does hydrogen bonding matter in crystal engineering? Crystal structures of salts of isomeric ions. , 2004, Chemistry.

[16]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[17]  Anthony L. Spek,et al.  Journal of , 1993 .

[18]  C. J. Matthews,et al.  Molecular bricklaying: the protonated benzimidazole moiety as a synthon for crystal engineering , 2003 .

[19]  O. Felix,et al.  Molecular tectonics and supramolecular chirality: rational design of hybrid 1-D and 2-D H-bonded molecular networks based on bis-amidinium dication and metal cyanide anions , 2002 .

[20]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[21]  P. Metrangolo,et al.  Halogen bonding: a paradigm in supramolecular chemistry. , 2001, Chemistry.

[22]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[23]  A. Beatty,et al.  A Versatile Route to Porous Solids: Organic-Inorganic Hybrid Materials Assembled through Hydrogen Bonds. , 1999, Angewandte Chemie.

[24]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[25]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[26]  J. Wuest,et al.  Molecular Tectonics. Porous Hydrogen-Bonded Networks with Unprecedented Structural Integrity , 1997 .

[27]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[28]  Raymond E. Davis,et al.  Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals , 1995 .

[29]  B. Abrahams,et al.  A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks , 1991 .

[30]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[31]  H. Schmidbaur The fascinating implications of new results in gold chemistry , 1990 .

[32]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[33]  Christoph Janiak,et al.  A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands , 2000 .

[34]  A. F. Williams,et al.  SUCCESSIVE USE OF METAL ION COORDINATION AND HYDROGEN BONDING TO GENERATE INTERPENETRATING INFINITE RHOMBOHEDRAL NETWORKS , 1995 .

[35]  M. Zaworotko Crystal engineering of diamondoid networks , 1994 .

[36]  M. A. Phillips XXV.—The formation of 2-methylbenziminazoles , 1928 .