Eu2+, Eu3+ and Sm3+ emission in SrAl12O19 phosphors prepared via combustion synthesis

Strontium hexa‐aluminate phosphors activated with Eu3+ and Sm3+ ions were produced at low temperatures (500 °C) by the combustion of corresponding metal nitrate–urea mixtures over a period of 5 min. Powder X‐ray diffraction characterization and photoluminescence studies of these samples were carried out. It was found that co‐doping of Sm3+ ions helps in the partial reduction of Eu3+ ions to Eu2+ ions in SrAl12O19. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  M. Lastusaari,et al.  Annihilation of the persistent luminescence of MAl2O4:Eu2+ by Sm3+ co-doping , 2004 .

[2]  I. Zvereva,et al.  Complex aluminates RE2SrAl2O7 (RE = La, Nd, Sm–Ho): Cation ordering and stability of the double perovskite slab–rocksalt layer P2/RS intergrowth , 2003 .

[3]  Hee Dong Park,et al.  White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties , 2003 .

[4]  D. Mao,et al.  Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties , 2003 .

[5]  Yuanhua Lin,et al.  Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors , 2002 .

[6]  Xiaojun Wang,et al.  Green phosphorescence of CaAl2O4:Tb3+,Ce3+ through persistence energy transfer , 2002 .

[7]  Yuanhua Lin,et al.  Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties , 2001 .

[8]  Jorma Hölsä,et al.  Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+ , 2001 .

[9]  Junying Zhang,et al.  The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3 , 2001 .

[10]  Lizhu Lu,et al.  The Long‐Persistent Photoconductivity of SrAl2 O 4 : Eu2 + , Dy3 + Single Crystals , 2000 .

[11]  S. A. Cicillini,et al.  A new procedure to obtain Eu3+ doped oxide and oxosalt phosphors , 2000 .

[12]  Shosaku Tanaka,et al.  Blue emitting CaAl2O4 : Eu2+ phosphors for PDP application , 2000 .

[13]  T. Katsumata,et al.  Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals , 1999 .

[14]  J. McKittrick,et al.  The influence of processing parameters on luminescent oxides produced by combustion synthesis , 1999 .

[15]  G. Blasse,et al.  Optical properties of Eu2+-activated orthosilicates and orthophosphates , 1997 .

[16]  C. Ronda Recent achievements in research on phosphors for lamps and displays , 1997 .

[17]  Y. Guyot,et al.  Spectroscopy and laser operation of Pr, Mg:SrAl12O19 , 1996 .

[18]  K. C. Patil,et al.  Synthesis and properties of rare earth doped lamp phosphors , 1995 .

[19]  G. Blasse,et al.  Luminescence of Eu2+ in barium and strontium aluminate and gallate , 1995 .

[20]  B. Smets,et al.  2SrO · 3Al2 O 3 : Eu2 + and 1.29 ( Ba , Ca ) O , 6Al2 O 3 : Eu2 + Two New Blue‐Emitting Phosphors , 1989 .

[21]  B. Smets Phosphors based on rare-earths, a new era in fluorescent lighting , 1987 .

[22]  G. Blasse,et al.  Energy transfer between inequivalent Eu2+ ions , 1986 .

[23]  K. C. Adiga,et al.  A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures , 1981 .

[24]  J. Verstegen A Survey of a Group of Phosphors, Based on Hexagonal Aluminate and Gallate Host Lattices , 1974 .

[25]  村尾 剛 G.H. Dieke: Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience Pub., New York, 1968, 401頁, 16×23.5cm, $13.95. , 1969 .

[26]  T. Barry Fluorescence of Eu2+‐Activated Phases in Binary Alkaline Earth Orthosilicate Systems , 1968 .

[27]  G. Blasse,et al.  Some New Classes of Efficient Eu2+ ‐Activated Phosphors , 1968 .

[28]  A. Levine,et al.  Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2 O 4 Activated by Divalent Europium , 1968 .

[29]  M. V. Hoffman Eu+2 Activation in Some Alkaline Earth Strontium Phosphate Compounds , 1968 .