Niche Radius Adaptation with Asymmetric Sharing

In the field of Genetic Algorithms, nichingtechniques have been invented with the aim to induce speciationon multimodal fitness landscapes. Unfortunately, they often rely on a problem-dependent niche radiusparameter. This is the niche radius problem. In recent research, the possibilities to transfer niching techniques to the field of Evolution Strategies(ES) have been studied. First attempts were carried out to learn a good value for the niche radius through self-adaptation. In this paper we introduce a new niching method for ES with self-adaptation of the niche radius: asymmetric sharing. It is a form of fitness sharing. In contrast to earlier studies, it does not depend on coupling the niche radius to other strategy parameters. Experimental results indicate that asymmetric sharing performs well in comparison to traditional sharing, without relying on problem-dependent parameters.

[1]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[2]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[3]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[4]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[5]  Michael J. Shaw,et al.  Genetic algorithms with dynamic niche sharing for multimodal function optimization , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[6]  Ofer M. Shir,et al.  Dynamic niching in evolution strategies with covariance matrix adaptation , 2005, 2005 IEEE Congress on Evolutionary Computation.

[7]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[8]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[9]  Xiaodong Yin,et al.  Improving Genetic Algorithms with Sharing through Cluster Analysis , 1993, ICGA.

[10]  Ofer M. Shir,et al.  Self-Adaptive Niching CMA-ES with Mahalanobis Metric , 2007, 2007 IEEE Congress on Evolutionary Computation.

[11]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[12]  Ofer M. Shir,et al.  Niching in evolution strategies , 2005, GECCO '05.

[13]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[14]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[15]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[16]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[17]  Ofer M. Shir,et al.  Niche Radius Adaptation in the CMA-ES Niching Algorithm , 2006, PPSN.