Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement

Red clover (Trifolium pratense L.) is a globally significant forage legume in pastoral livestock farming systems. It is an attractive component of grassland farming, because of its high yield and protein content, nutritional value and ability to fix atmospheric nitrogen. Enhancing its role further in sustainable agriculture requires genetic improvement of persistency, disease resistance, and tolerance to grazing. To help address these challenges, we have assembled a chromosome-scale reference genome for red clover. We observed large blocks of conserved synteny with Medicago truncatula and estimated that the two species diverged ~23 million years ago. Among the 40,868 annotated genes, we identified gene clusters involved in biochemical pathways of importance for forage quality and livestock nutrition. Genotyping by sequencing of a synthetic population of 86 genotypes show that the number of markers required for genomics-based breeding approaches is tractable, making red clover a suitable candidate for association studies and genomic selection.

[1]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[2]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[3]  Koichiro Tamura,et al.  Estimating divergence times in large molecular phylogenies , 2012, Proceedings of the National Academy of Sciences.

[4]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[5]  Roeland E. Voorrips,et al.  Software for the calculation of genetic linkage maps , 2001 .

[6]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[7]  Alex Boyd,et al.  Hal: an Automated Pipeline for Phylogenetic Analyses of Genomic Data , 2011, PLoS currents.

[8]  J. Moorby,et al.  The effect of red clover formononetin content on live-weight gain, carcass characteristics and muscle equol content of finishing lambs , 2004 .

[9]  J. Young,et al.  Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. , 2006, Journal of agricultural and food chemistry.

[10]  M. Wojciechowski,et al.  Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.

[11]  Temple F. Smith,et al.  Prediction of gene structure. , 1992, Journal of molecular biology.

[12]  M. Sullivan,et al.  Cloning and Characterization of Red Clover Polyphenol Oxidase cDNAs and Expression of Active Protein in Escherichia coli and Transgenic Alfalfa1[w] , 2004, Plant Physiology.

[13]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[14]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[15]  Tetsuya Hayashi,et al.  Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads , 2014, Genome research.

[16]  Huanming Yang,et al.  Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers , 2011, Nature Biotechnology.

[17]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[18]  Rod A Wing,et al.  A reference genome for common bean and genome-wide analysis of dual domestications , 2014, Nature Genetics.

[19]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[20]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[21]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[22]  C. Soderlund,et al.  SyMAP: A system for discovering and viewing syntenic regions of FPC maps. , 2006, Genome research.

[23]  T. Ruttink,et al.  De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification , 2014, BMC Genomics.

[24]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[25]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[26]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[27]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[28]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[29]  Stephen M. Mount,et al.  Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. , 2003, Nucleic acids research.

[30]  Keith Bradnam,et al.  Assessing the gene space in draft genomes , 2008, Nucleic acids research.

[31]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[32]  Robert J. Elshire,et al.  A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species , 2011, PloS one.

[33]  Takakazu Kaneko,et al.  Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.). , 2005, DNA research : an international journal for rapid publication of reports on genes and genomes.

[34]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[35]  S. S. Yang,et al.  Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems , 2011, BMC Genomics.

[36]  P. Sørensen,et al.  Genome-wide and local pattern of linkage disequilibrium and persistence of phase for 3 Danish pig breeds , 2013, BMC Genetics.

[37]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[38]  C. Soderlund,et al.  Contigs built with fingerprints, markers, and FPC V4.7. , 2000, Genome research.

[39]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[40]  M. Sullivan,et al.  Gene expression patterns, localization, and substrates of polyphenol oxidase in red clover ( Trifolium pratense L.). , 2013, Journal of agricultural and food chemistry.

[41]  R. Dewhurst,et al.  Comparison of grass and legume silages for milk production. 2. In vivo and in sacco evaluations of rumen function. , 2003, Journal of dairy science.

[42]  R. Dewhurst,et al.  Comparison of grass and legume silages for milk production. 1. Production responses with different levels of concentrate. , 2003, Journal of dairy science.

[43]  James K. Hane,et al.  Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement , 2013, Nature Biotechnology.

[44]  I. Donnison,et al.  Identification of an extensive gene cluster among a family of PPOs in Trifolium pratense L. (red clover) using a large insert BAC library , 2009, BMC Plant Biology.

[45]  Aaron Liston,et al.  Molecular phylogenetics of the clover genus (Trifolium--Leguminosae). , 2006, Molecular phylogenetics and evolution.

[46]  N. Adams,et al.  Detection of the effects of phytoestrogens on sheep and cattle. , 1995, Journal of animal science.

[47]  Richard M. Leggett,et al.  NextClip: an analysis and read preparation tool for Nextera Long Mate Pair libraries , 2013, Bioinform..

[48]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[49]  N. Taylor Stability of S Alleles in a Doublecross Hybrid of Red Clover 1 , 1982 .

[50]  K. Quesenberry,et al.  Red Clover Science , 1996, Current Plant Science and Biotechnology in Agriculture.

[51]  J. Frame,et al.  Temperate Forage Legumes , 1997 .

[52]  Ales Krenek,et al.  Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae). , 2014, American journal of botany.

[53]  S. Tabata,et al.  Construction of a consensus linkage map for red clover (Trifolium pratense L.) , 2009, BMC Plant Biology.

[54]  H. Mori,et al.  Genome Structure of the Legume, Lotus japonicus , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[55]  György Abrusán,et al.  TEclass - a tool for automated classification of unknown eukaryotic transposable elements , 2009, Bioinform..

[56]  Alvaro J. González,et al.  The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses , 2011, Nature.

[57]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[58]  S. Tabata,et al.  Comparative Genetic Mapping and Discovery of Linkage Disequilibrium Across Linkage Groups in White Clover (Trifolium repens L.) , 2012, G3: Genes | Genomes | Genetics.