CdSe quantum-dot-sensitized solar cell with ∼100% internal quantum efficiency.

We have constructed and studied photoelectrochemical solar cells (PECs) consisting of a photoanode prepared by direct deposition of independently synthesized CdSe nanocrystal quantum dots (NQDs) onto a nanocrystalline TiO(2) film (NQD/TiO(2)), aqueous Na(2)S or Li(2)S electrolyte, and a Pt counter electrode. We show that light harvesting efficiency (LHE) of the NQD/TiO(2) photoanode is significantly enhanced when the NQD surface passivation is changed from tri-n-octylphosphine oxide (TOPO) to 4-butylamine (BA). In the PEC the use of NQDs with a shorter passivating ligand, BA, leads to a significant enhancement in both the electron injection efficiency at the NQD/TiO(2) interface and charge collection efficiency at the NQD/electrolyte interface, with the latter attributed mostly to a more efficient diffusion of the electrolyte through the pores of the photoanode. We show that by utilizing BA-capped NQDs and aqueous Li(2)S as an electrolyte, it is possible to achieve ∼100% internal quantum efficiency of photon-to-electron conversion, matching the performance of dye-sensitized solar cells.

[1]  Naoki Koide,et al.  Measuring methods of cell performance of dye-sensitized solar cells , 2004 .

[2]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[3]  J. Bisquert,et al.  Improving the performance of colloidal quantum-dot-sensitized solar cells , 2009, Nanotechnology.

[4]  Horst Weller,et al.  Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS , 1990 .

[5]  R. Könenkamp,et al.  Photoconduction in porous TiO2 sensitized by PbS quantum dots , 1995 .

[6]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[7]  Ashraful Islam,et al.  Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1% , 2006 .

[8]  A. Walker,et al.  Transient photocurrents in dye-sensitized nanocrystalline solar cells , 2007 .

[9]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[10]  Arthur J. Nozik,et al.  Photosensitization of nanoporous TiO2 electrodes with InP quantum dots , 1998 .

[11]  Y. Tachibana,et al.  Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer , 2008 .

[12]  Q. Shen,et al.  Effect of sensitization by quantum-sized CdS on photoacoustic and photoelectrochemical current spectra of porous TiO2 electrodes , 2003 .

[13]  C. B. Carter,et al.  Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. , 2007, Nano letters.

[14]  V. Klimov Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication , 2006 .

[15]  Qing Shen,et al.  Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates , 2004 .

[16]  Xiaomei Lu,et al.  SENSITIZATION OF NANOCRYSTALLINE TIO2 ELECTRODE WITH QUANTUM SIZED CDSE AND ZNTCPC MOLECULES , 1997 .

[17]  Takayuki Kitamura,et al.  Role of electrolytes on charge recombination in dye-sensitized TiO(2) solar cell (1): the case of solar cells using the I(-)/I(3)(-) redox couple. , 2005, The journal of physical chemistry. B.

[18]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[19]  Anders Hagfeldt,et al.  The influence of cations on charge accumulation in dye-sensitized solar cells , 2007 .

[20]  Michael Grätzel,et al.  Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals , 2003 .

[21]  Q. Shen,et al.  High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells , 2007 .

[22]  Matthew B. Johnson,et al.  Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. , 2003, Journal of the American Chemical Society.

[23]  Kai Zhu,et al.  Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. , 2006, The journal of physical chemistry. B.

[24]  A. Norman,et al.  Efficient Photoinduced Charge Injection from Chemical Bath Deposited CdS into Mesoporous TiO2 Probed with Time-Resolved Microwave Conductivity , 2008 .

[25]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[26]  Gerald J. Meyer,et al.  ENHANCED SPECTRAL SENSITIVITY FROM RUTHENIUM(II) POLYPYRIDYL BASED PHOTOVOLTAIC DEVICES , 1994 .

[27]  S. Haque,et al.  PbS and CdS Quantum Dot‐Sensitized Solid‐State Solar Cells: “Old Concepts, New Results” , 2009 .

[28]  Udo Bach,et al.  Quantum dot sensitization of organic-inorganic hybrid solar cells , 2002 .

[29]  Hironori Arakawa,et al.  Quantitative Analysis of Light-Harvesting Efficiency and Electron-Transfer Yield in Ruthenium-Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2002 .

[30]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[31]  Juan Bisquert,et al.  Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode , 2008, Nanotechnology.

[32]  D. Riley,et al.  Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. , 2002, Chemical communications.

[33]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[34]  T. Kitamura,et al.  Effects of Lithium Ion Density on Electron Transport in Nanoporous TiO2 Electrodes , 2001 .

[35]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[36]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[37]  Jacques I. Pankove,et al.  Optical Processes in Semiconductors , 1971 .

[38]  Y. Tachibana,et al.  CdS Quantum Dots Sensitized TiO2 Sandwich Type Photoelectrochemical Solar Cells , 2007 .

[39]  Takehito Mitate,et al.  Modeling of an equivalent circuit for dye-sensitized solar cells , 2004 .

[40]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[41]  Emilio Palomares,et al.  Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. , 2005, Journal of the American Chemical Society.

[42]  H. Arakawa,et al.  Lithium ion effect on electron injection from a photoexcited coumarin derivative into a TiO2 nanocrystalline film investigated by visible-to-IR ultrafast spectroscopy. , 2005, The journal of physical chemistry. B.

[43]  Joachim Luther,et al.  Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions , 2002 .

[44]  Su-Moon Park,et al.  Anchoring cadmium chalcogenide quantum dots (QDs) onto stable oxide semiconductors for QD sensitized solar cells , 2007 .

[45]  Prashant V. Kamat,et al.  Photoelectrochemical Behavior of Thin CdSe and Coupled TiO2/CdSe Semiconductor Films. , 1994 .

[46]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[47]  Z. Wen,et al.  Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO2 Films for Solar Energy Conversion Applications , 2008 .

[48]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[49]  Juan Bisquert,et al.  CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment , 2009 .