Growth of branching Si nanowires seeded by Au–Si surface migration

Gold–silicon eutectic liquid surface migration is employed during an intermediate annealing to synthesize branched silicon nanowires by the vapor–liquid–solid (VLS) mechanism without additional gold seeding steps. Independent control of primary nanowire and branch length is demonstrated. Scanning electron micrographs confirm the unkinked nature of the branches, and show that the presence of hydrogen during the annealing is crucial for the growth of long, single-crystalline Si branches. Scanning confocal Raman microscopic maps indicate the high crystallinity of the branched nanowires, while transmission electron microscopy studies demonstrate the epitaxial growth of the branches and confirm their [11] growth direction. This strategy is versatile in that it may be extended to many materials, individually or in combination, available for VLS grown nanowires for the synthesis of tailored, hierarchical nanostructures with fundamentally novel and technologically relevant properties.

[1]  Shadi A Dayeh,et al.  III-V nanowire growth mechanism: V/III ratio and temperature effects. , 2007, Nano letters.

[2]  Fang Qian,et al.  Rational growth of branched and hyperbranched nanowire structures , 2004 .

[3]  K. Kolasinski Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth , 2006 .

[4]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[5]  Peidong Yang,et al.  Germanium Nanowire Growth via Simple Vapor Transport , 2000 .

[6]  Lars Samuelson,et al.  Position-controlled interconnected InAs nanowire networks. , 2006, Nano letters.

[7]  S. Kodambaka,et al.  Control of Si nanowire growth by oxygen. , 2006, Nano letters.

[8]  A. Dong,et al.  Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires. , 2007, Journal of the American Chemical Society.

[9]  Gottfried Strasser,et al.  Growth of branched single-crystalline GaAs whiskers on Si nanowire trunks , 2007 .

[10]  Peidong Yang,et al.  Controlled growth of Si nanowire arrays for device integration. , 2005, Nano letters.

[11]  Luca Magagnin,et al.  Gold Deposition by Galvanic Displacement on Semiconductor Surfaces: Effect of Substrate on Adhesion , 2002 .

[12]  B. Ressel,et al.  Surface diffusion of Au on Si(111): A microscopic study , 2000 .

[13]  R. Maboudian,et al.  Structure and morphology of annealed gold films galvanically displaced on the Si(111) surface , 2007 .

[14]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[15]  Takahiro Kawashima,et al.  Control of surface migration of gold particles on Si nanowires. , 2008, Nano letters.

[16]  Lars Samuelson,et al.  Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events , 2004, Nature materials.

[17]  L. Lauhon,et al.  Dendritic Nanowire Growth Mediated by a Self‐Assembled Catalyst , 2005 .

[18]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[19]  Elizabeth C. Dickey,et al.  Vapor–Liquid–Solid Growth of Silicon–Germanium Nanowires , 2003 .

[20]  Tseung-Yuen Tseng,et al.  Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process , 2003 .

[21]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .

[22]  Selective growth of Si nanowire arrays via galvanic displacement processes in water-in-oil microemulsions. , 2005, Journal of the American Chemical Society.

[23]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[24]  R. Maboudian,et al.  Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes , 2007 .

[25]  K. H. Chen,et al.  Catalytic growth and characterization of gallium nitride nanowires. , 2001, Journal of the American Chemical Society.

[26]  Michael L. Roukes,et al.  Very High Frequency Silicon Nanowire Electromechanical Resonators , 2007 .

[27]  M. V. Rao,et al.  Growth of Silicon Carbide Nanowires by a Microwave Heating-Assisted Physical Vapor Transport Process Using Group VIII Metal Catalysts , 2007 .

[28]  B. Ocko,et al.  Surface Crystallization in a Liquid AuSi Alloy , 2006, Science.

[29]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[30]  Yeonwoong Jung,et al.  Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. , 2007, Nano letters.

[31]  R. Maboudian,et al.  Synthesis of High Density, Size-Controlled Si Nanowire Arrays via Porous Anodic Alumina Mask , 2006 .