Statistics of the Occupation Time of Renewal Processes

[1]  Cornell,et al.  Nontrivial Exponent for Simple Diffusion. , 1996, Physical review letters.

[2]  Large deviations and nontrivial exponents in coarsening systems , 1997, cond-mat/9712178.

[3]  P. Krapivsky,et al.  Coarsening and persistence in the voter model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Residence time distribution for a class of Gaussian Markov processes. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  C Godreche,et al.  Phase ordering and persistence in a class of stochastic processes interpolating between the Ising and voter models , 1999 .

[6]  J. Griffiths The Theory of Stochastic Processes , 1967 .

[7]  J. Luck,et al.  Partial survival and inelastic collapse for a randomly accelerated particle , 2000, cond-mat/0009001.

[8]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[9]  P. Deligné,et al.  Compositio Mathematica , 1934, The Mathematical Gazette.

[10]  C. Knobler,et al.  Growth of breath figures. , 1986, Physical review letters.

[11]  P. Erdös,et al.  On certain limit theorems of the theory of probability , 1946 .

[12]  J. Drouffe,et al.  Temporal correlations and persistence in the kinetic Ising model: the role of temperature , 2000, cond-mat/0012068.

[13]  Statistics of the occupation time for a class of Gaussian Markov processes , 2000, cond-mat/0010453.

[14]  David Griffeath,et al.  Occupation Time Limit Theorems for the Voter Model , 1983 .

[15]  John Lamperti,et al.  An occupation time theorem for a class of stochastic processes , 1958 .

[16]  STATIONARY DEFINITION OF PERSISTENCE FOR FINITE-TEMPERATURE PHASE ORDERING , 1998, cond-mat/9808153.

[17]  Jim Pitman,et al.  Arcsine Laws and Interval Partitions Derived from a Stable Subordinator , 1992 .

[18]  J. Bouchaud,et al.  Self-diffusion and ‘visited’ surface in the droplet condensation problem (breath figures) , 1995 .

[19]  Response of non-equilibrium systems at criticality: ferromagnetic models in dimension two and above , 2000, cond-mat/0001264.

[20]  D. Darling,et al.  ON OCCUPATION TIMES FOR MARKOFF PROCESSES , 1957 .