Compact Normal Form for Regular Languages as Xor Automata

The only presently known normal form for a regular language ${\mathcal{L}}\in{\mathcal{R}\mathrm{eg}}$ is its Minimal Deterministic Automaton ${\mathrm{MDA}}({\mathcal{L}})$. We show that a regular language is also characterized by a finite dimension $\dim({\mathcal{L}})$, which is always smaller than the number $|{\mathrm{MDA}}({\mathcal{L}})|$ of states, and often exponentially so. The dimension is also the minimal number of states of all Nondeterministic Xor Automaton (NXA) which accept the language. NXAs combine the advantages of deterministic automata (normal form, negation, minimization, equivalence of states, accessibility) and of nondeterministic ones (compactness, mirror language). We present an algorithmic construction of the Minimal Non Deterministic Xor Automaton ${\mathrm{MXA}}(\mathcal{L})$, in cubic time from any NXA for ${\mathcal{L}}\in{\mathcal{R}\mathrm{eg}}$. The MXA provides another normal form: ${\mathcal{L}}=\mathcal{L}^{\prime}\Leftrightarrow{\mathrm{MXA}}({\mathcal{L}})={\mathrm{MXA}}(\mathcal{L}^{\prime})$. Our algorithm establishes a missing connection between Brzozowski's mirror-based minimization method for deterministic automata, and algorithms based on state-equivalence.

[1]  Jeffrey Shallit,et al.  On the Number of Distinct Languages Accepted by Finite Automata with n States , 2002, DCFS.

[2]  Raymond J. Nelson Shannon Claude E.. The synthesis of two-terminal switching circuits. The Bell System technical journal , vol. 28 (1949), pp. 59–98. , 1955 .

[3]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[4]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[5]  B. Watson A taxonomy of finite automata minimization algorithms , 1993 .

[6]  A. Nerode,et al.  Linear automaton transformations , 1958 .

[7]  Mehryar Mohri,et al.  Weighted Automata Algorithms , 2009 .

[8]  Lynette van Zijl,et al.  Minimization of unary symmetric difference NFAs , 2004, South Afr. Comput. J..

[9]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[10]  Tsunehiko Kameda,et al.  On the State Minimization of Nondeterministic Finite Automata , 1970, IEEE Transactions on Computers.

[11]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[12]  Theodore M. Booth Demonstrating hazards in sequential relay circuits , 1963, SWCT.

[13]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[14]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[15]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[16]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[17]  A. Church Edward F. Moore. Gedanken-experiments on sequential machines. Automata studies , edited by C. E. Shannon and J. McCarthy, Annals of Mathematics studies no. 34, litho-printed, Princeton University Press, Princeton1956, pp. 129–153. , 1958, Journal of Symbolic Logic.

[18]  David A. Huffman,et al.  The synthesis of sequential switching circuits , 1954 .

[19]  Lynette van Zijl,et al.  On binary ⊕-NFAs and succinct descriptions of regular languages , 2004, Theor. Comput. Sci..

[20]  J. M. Foster,et al.  Mathematical theory of automata , 1965 .