Bovine chymotrypsinogen A X-ray crystal structure analysis and refinement of a new crystal form at 1.8 A resolution.

[1]  W. Bode,et al.  Determination of the protein content of crystals formed by Mastigocladus laminosus C-phycocyanin, Chroomonas spec. phycocyanin-645 and modified human fibrinogen using an improved Ficoll density gradient method. , 1985, Biological chemistry Hoppe-Seyler.

[2]  W. Bode,et al.  Refined 2 A X-ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin-like serine proteinase. Crystallization, structure determination, crystallographic refinement, structure and its comparison with bovine trypsin. , 1983, Journal of molecular biology.

[3]  M Bolognesi,et al.  Three-dimensional structure of the complex between pancreatic secretory trypsin inhibitor (Kazal type) and trypsinogen at 1.8 A resolution. Structure solution, crystallographic refinement and preliminary structural interpretation. , 1982, Journal of molecular biology.

[4]  R. Huber,et al.  Interaction of human alpha 1-proteinase inhibitor with chymotrypsinogen A and crystallization of a proteolytically modified alpha 1-proteinase inhibitor. , 1982, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[5]  R. Huber,et al.  Crystallographic refinement of Japanese quail ovomucoid, a Kazal-type inhibitor, and model building studies of complexes with serine proteases. , 1982, Journal of molecular biology.

[6]  Robert Huber,et al.  On the disordered activation domain in trypsinogen: chemical labelling and low‐temperature crystallography , 1982 .

[7]  G. Cohen,et al.  Refined crystal structure of gamma-chymotrypsin at 1.9 A resolution. Comparison with other pancreatic serine proteases. , 1981, Journal of molecular biology.

[8]  R. Huber,et al.  Low‐temperature protein crystallography. Effect on flexibility, temperature factor, mosaic spread, extinction and diffuse scattering in two examples: bovine trypsinogen and Fc fragment , 1980 .

[9]  K. Wüthrich,et al.  Conformational transition from trypsinogen to trypsin. 1H nuclear magnetic resonance at 360 MHz and ring current calculations. , 1980, Journal of molecular biology.

[10]  I. Kato,et al.  Protein inhibitors of proteinases. , 1980, Annual review of biochemistry.

[11]  W. Bode,et al.  The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. II. The binding of the pancreatic trypsin inhibitor and of isoleucine-valine and of sequentially related peptides to trypsinogen and to p-guanidinobenzoate-trypsinogen. , 1979, Journal of molecular biology.

[12]  Michael Levitt,et al.  Refinement of Large Structures by Simultaneous Minimization of Energy and R Factor , 1978 .

[13]  T. A. Jones,et al.  A graphics model building and refinement system for macromolecules , 1978 .

[14]  H. Neurath,et al.  Probes of the mechanism of zymogen catalysis. , 1978, Biochemistry.

[15]  R. Huber,et al.  Crystal structure analysis and refinement of two variants of trigonal trypsinogen , 1978, FEBS letters.

[16]  R. Huber,et al.  Structural basis of the activation and action of trypsin , 1978 .

[17]  R. Huber,et al.  The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. The refined crystal structures of the bovine trypsinogen-pancreatic trypsin inhibitor complex and of its ternary complex with Ile-Val at 1.9 A resolution. , 1978, Journal of molecular biology.

[18]  George M. Church,et al.  A structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters , 1977 .

[19]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[20]  R. Huber,et al.  Crystal structure of bovine trypsinogen at 1-8 A resolution. II. Crystallographic refinement, refined crystal structure and comparison with bovine trypsin. , 1977, Journal of molecular biology.

[21]  M. Kerr,et al.  A proposal for the mechanism of chymotrypsinogen activation. , 1976, Biochemistry.

[22]  J. Kraut,et al.  A detailed structural comparison between the charge relay system in chymotrypsinogen and in alpha-chymotrypsin. , 1976, Biochemistry.

[23]  R. Huber,et al.  Induction of the bovine trypsinogen—trypsin transition by peptides sequentially similar to the N‐terminus of trypsin , 1976, FEBS letters.

[24]  R. Huber,et al.  Crystal structure of bovine trypsinogen at 1-8 A resolution. I. Data collection, application of patterson search techniques and preliminary structural interpretation. , 1976, Journal of molecular biology.

[25]  E. Westbrook,et al.  Characterization of hexagonal crystal form of an enzyme of steroid metabolism, delta5-3-ketosteroid isomerase: a new method of crystal density measurement. , 1976, Journal of molecular biology.

[26]  W. Bode,et al.  The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. , 1975, Journal of molecular biology.

[27]  W. Bode,et al.  The refined crystal structure of bovine β-trypsin at 1·8 Å resolution , 1975 .

[28]  P. Schwager,et al.  Refinement of setting angles in screenless film methods , 1975 .

[29]  C. Chothia Structural invariants in protein folding , 1975, Nature.

[30]  J Deisenhofer,et al.  Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 A resolution. , 1974, Journal of molecular biology.

[31]  H. Neurath,et al.  Catalysis by chymotrypsinogen. Demonstration of an acyl-zymogen intermediate. , 1974, Biochemistry.

[32]  M. Levitt,et al.  Energy refinement of hen egg-white lysozyme. , 1974, Journal of molecular biology.

[33]  H. Wright Comparison of the crystal structures of chymotrypsinogen-A and α-chymotrypsin☆ , 1973 .

[34]  H. Wright Activation of chymotrypsinogen-A. An hypothesis based upon comparison of the crystal structures of chymotrypsinogen-A and alpha-chymotrypsin. , 1973, Journal of molecular biology.

[35]  C. Morimoto,et al.  The structure of α-chymotrypsin. I. The refinement of the heavy-atom isomorphous derivatives at 2.8 Å resolution , 1973 .

[36]  S. Wasi,et al.  The conformational state of methionine residues in the temperature-controlled transition of chymotrypsinogen and -chymotrypsin. , 1973, Canadian journal of biochemistry.

[37]  J. Kraut,et al.  Subtilisin; a stereochemical mechanism involving transition-state stabilization. , 1972, Biochemistry.

[38]  D. M. Blow,et al.  Structure of crystalline -chymotrypsin. V. The atomic structure of tosyl- -chymotrypsin at 2 A resolution. , 1972, Journal of molecular biology.

[39]  G. Cohen,et al.  Substrate binding site in bovine chymotrypsin A-gamma. A crystallographic study using peptide chloromethyl ketones as site-specific inhibitors. , 1971, Biochemistry.

[40]  N. Xuong,et al.  Chymotrypsinogen: 2,5-Å crystal structure, comparison with α-chymotrypsin, and implications for zymogen activation , 1970 .

[41]  E. Lattman,et al.  Representation of phase probability distributions for simplified combination of independent phase information , 1970 .

[42]  Thomas A. Steitz,et al.  Structure of crystalline α-chymotrypsin: III. Crystallographic studies of substrates and inhibitors bound to the active site of α-chymotrypsin , 1969 .

[43]  B. Matthews,et al.  Atomic CO-ordinates for tosyl-α-chymotrypsin , 1969 .

[44]  M. Lazdunski,et al.  The Mechanism of Activation of Trypsinogen , 1969 .

[45]  D. Blow,et al.  Role of a Buried Acid Group in the Mechanism of Action of Chymotrypsin , 1969, Nature.

[46]  C. Venkatachalam Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units , 1968, Biopolymers.

[47]  B. Matthews,et al.  Structure of crystalline -chymotrypsin. II. A preliminary report including a hypothesis for the activation mechanism. , 1968, Journal of molecular biology.

[48]  B. Matthews Some crystal forms of bovine chymotrypsinogen B and chymotrypsinogen A. , 1968, Journal of molecular biology.

[49]  R. A. Crowther,et al.  A method of positioning a known molecule in an unknown crystal structure , 1967 .

[50]  B. Matthews,et al.  Three-dimensional Structure of Tosyl-α-chymotrypsin , 1967, Nature.

[51]  F. Šorm,et al.  Covalent structure of bovine chymotrypsinogen A. , 1966, Biochimica et biophysica acta.

[52]  B. Hartley Amino-Acid Sequence of Bovine Chymotrypsinogen-A , 1964, Nature.

[53]  D. Blow,et al.  The detection of sub‐units within the crystallographic asymmetric unit , 1962 .

[54]  G. A. Sim,et al.  The distribution of phase angles for structures containing heavy atoms. II. A modification of the normal heavy‐atom method for non‐centrosymmetrical structures , 1959 .

[55]  J. Kendrew,et al.  The crystal forms and molecular weight of α-chymotrypsinogen An X-ray study , 1956 .

[56]  P. Desnuelle,et al.  Sur les protéolyses limitées provoquant l'activation du chymotrypsinogène , 1955 .

[57]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .

[58]  G. Schwert The molecular size and shape of the pancreatic proteases; sedimentation studies on chymotrypsinogen and on alpha- and gamma-chymotrypsin. , 1949, The Journal of biological chemistry.

[59]  M. Kunitz FORMATION OF NEW CRYSTALLINE ENZYMES FROM CHYMOTRYPSIN : ISOLATION OF BETA AND GAMMA CHYMOTRYPSIN. , 1938 .