Prediction of cleavage crack propagation path in a nuclear pressure vessel steel

Abstract A propagation criterion based on maximum principal stress is proposed to predict the cleavage crack propagation in a nuclear vessel steel. Experiments are performed on three specimen geometries: standard Compact Tensile, precracked ring (mixed mode) and Extended Compact Tensile. Their crack paths are respectively directionally stable and straight, directionally stable and curved, directionally unstable and deflected. Numerical computations are performed by eXtended Finite Element Method. The propagation criterion, combined with a deterministic direction criterion based on the maximum hoop stress provides good predictions for directionally stable crack paths whereas predicting directionally unstable crack paths requires a probabilistic direction criterion.

[1]  Benoit Prabel Modélisation avec la méthode X-FEM de la propagation dynamique et de l'arrêt de fissure de clivage dans un acier de cuve REP , 2007 .

[2]  Clotilde Berdin,et al.  3D modeling of cleavage crack arrest with a stress criterion , 2012 .

[3]  Stéphane Chapuliot,et al.  A simplified expression for low cleavage probability calculation , 2008 .

[4]  P. Haušild,et al.  Prediction of cleavage fracture for a low-alloy steel in the ductile-to-brittle transition temperature range , 2005 .

[5]  Sébastien Murer,et al.  Crack deflection in a biaxial stress state , 2008 .

[6]  D. Koss,et al.  Temperature, strain rate, stress state and the failure of HY-100 steel , 2001 .

[7]  C. Berdin,et al.  Dynamic modeling of cleavage crack propagation and arrest with a local approach , 2011 .

[8]  G. T. Hahn,et al.  A preliminary study of fast fracture and arrest in the DCB test specimen , 1973 .

[9]  Yoichi Sumi,et al.  Computational crack path prediction , 1985 .

[10]  Clotilde Berdin,et al.  Local approach to fracture for cleavage crack arrest prediction , 2008 .

[11]  Benoit Prabel,et al.  Using the X-FEM method to model the dynamic propagation and arrest of cleavage cracks in ferritic steel , 2008 .

[12]  Benoit Prabel,et al.  Level set X‐FEM non‐matching meshes: application to dynamic crack propagation in elastic–plastic media , 2007 .

[13]  M. Reytier,et al.  Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone—Part II: Numerical calculations and interpretation of the test results , 2006 .

[14]  John R. Rice,et al.  ON THE RELATIONSHIP BETWEEN CRITICAL TENSILE STRESS AND FRACTURE TOUGHNESS IN MILD STEEL , 1973 .

[15]  S. Marie,et al.  Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone. Part I: description of tests , 2005 .

[16]  David A. Dillard,et al.  The effect of the T-stress on crack path selection in adhesively bonded joints , 2001 .

[17]  P. Cornetti,et al.  T-stress effects on crack deflection: Straight vs. curved crack advance , 2016 .

[18]  A. Pineau,et al.  A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .

[19]  G. R. Irwin,et al.  A CONTINUUM-MECHANICS VIEW OF CRACK PROPAGATION , 1965 .

[20]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[21]  Alain Combescure,et al.  Appropriate extended functions for X-FEM simulation of plastic fracture mechanics , 2006 .

[22]  A. Pineau,et al.  DYNAMIC CRACK PROPAGATION AND CRACK ARREST INVESTIGATED WITH A NEW SPECIMEN GEOMETRY: PART II: EXPERIMENTAL STUDY ON A LOW‐ALLOY FERRITIC STEEL , 1996 .

[23]  M. F. Kanninen,et al.  Viscoplastic-dynamic crack propagation: Experimental and analysis research for crack arrest applications in engineering structures , 1990 .

[24]  Robert O. Ritchie,et al.  Finite crack kinking and T-stresses in functionally graded materials , 2001 .

[25]  P. Bompard,et al.  Cleavage Crack Propagation Characterization in a Nuclear Pressure Vessel Steel , 2012 .