Prediction of cleavage crack propagation path in a nuclear pressure vessel steel
暂无分享,去创建一个
Clémentine Jacquemoud | Philippe Bompard | Stéphane Marie | P. Bompard | S. Marie | Xiaoyu Yang | C. Jacquemoud | Xiaoyu Yang
[1] Benoit Prabel. Modélisation avec la méthode X-FEM de la propagation dynamique et de l'arrêt de fissure de clivage dans un acier de cuve REP , 2007 .
[2] Clotilde Berdin,et al. 3D modeling of cleavage crack arrest with a stress criterion , 2012 .
[3] Stéphane Chapuliot,et al. A simplified expression for low cleavage probability calculation , 2008 .
[4] P. Haušild,et al. Prediction of cleavage fracture for a low-alloy steel in the ductile-to-brittle transition temperature range , 2005 .
[5] Sébastien Murer,et al. Crack deflection in a biaxial stress state , 2008 .
[6] D. Koss,et al. Temperature, strain rate, stress state and the failure of HY-100 steel , 2001 .
[7] C. Berdin,et al. Dynamic modeling of cleavage crack propagation and arrest with a local approach , 2011 .
[8] G. T. Hahn,et al. A preliminary study of fast fracture and arrest in the DCB test specimen , 1973 .
[9] Yoichi Sumi,et al. Computational crack path prediction , 1985 .
[10] Clotilde Berdin,et al. Local approach to fracture for cleavage crack arrest prediction , 2008 .
[11] Benoit Prabel,et al. Using the X-FEM method to model the dynamic propagation and arrest of cleavage cracks in ferritic steel , 2008 .
[12] Benoit Prabel,et al. Level set X‐FEM non‐matching meshes: application to dynamic crack propagation in elastic–plastic media , 2007 .
[13] M. Reytier,et al. Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone—Part II: Numerical calculations and interpretation of the test results , 2006 .
[14] John R. Rice,et al. ON THE RELATIONSHIP BETWEEN CRITICAL TENSILE STRESS AND FRACTURE TOUGHNESS IN MILD STEEL , 1973 .
[15] S. Marie,et al. Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone. Part I: description of tests , 2005 .
[16] David A. Dillard,et al. The effect of the T-stress on crack path selection in adhesively bonded joints , 2001 .
[17] P. Cornetti,et al. T-stress effects on crack deflection: Straight vs. curved crack advance , 2016 .
[18] A. Pineau,et al. A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .
[19] G. R. Irwin,et al. A CONTINUUM-MECHANICS VIEW OF CRACK PROPAGATION , 1965 .
[20] Nathan M. Newmark,et al. A Method of Computation for Structural Dynamics , 1959 .
[21] Alain Combescure,et al. Appropriate extended functions for X-FEM simulation of plastic fracture mechanics , 2006 .
[22] A. Pineau,et al. DYNAMIC CRACK PROPAGATION AND CRACK ARREST INVESTIGATED WITH A NEW SPECIMEN GEOMETRY: PART II: EXPERIMENTAL STUDY ON A LOW‐ALLOY FERRITIC STEEL , 1996 .
[23] M. F. Kanninen,et al. Viscoplastic-dynamic crack propagation: Experimental and analysis research for crack arrest applications in engineering structures , 1990 .
[24] Robert O. Ritchie,et al. Finite crack kinking and T-stresses in functionally graded materials , 2001 .
[25] P. Bompard,et al. Cleavage Crack Propagation Characterization in a Nuclear Pressure Vessel Steel , 2012 .