Femtosecond laser near field ablation

The high field strength of femtosecond laser pulses leads to nonlinear effects during the interaction with condensed matter. One such effect is the ablation process, which can be initiated below the threshold of common thermal ablation if the excitation pulses are sufficiently short. This effect leads to structure formation, which is anisotropic because of the polarization properties of the near field and can result in pattern sizes below the resolution limit of light. These effects are explored by temporally resolved scattering methods and by post-mortem analysis to show the non-thermal and anisotropic nature of this process. The near-field distribution of plasmon modes can be tailored to a large extent in order to obtain control of the pattern formation.

[1]  M. Maillard,et al.  Electron-phonon scattering in metal clusters. , 2003, Physical review letters.

[2]  R. Yen,et al.  Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon , 1983 .

[3]  Juris Blums,et al.  Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit , 2003, Nature.

[4]  Minoru Obara,et al.  Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse , 2007 .

[5]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[6]  Yoshihiro Takeda,et al.  Full Physical Preparation of Size-Selected Gold Nanoparticles in Solution: Laser Ablation and Laser-Induced Size Control , 2002 .

[7]  Shaochen Chen,et al.  Nanoscale surface modification of glass using a 1064 nm pulsed laser , 2003 .

[8]  G. Naylor,et al.  Structural kinetics of laser-excited metal nanoparticles supported on a surface , 2004 .

[9]  Richard G. Forbes,et al.  Atom probe tomography , 2000 .

[10]  Lin Zhang,et al.  The toroidal mirror for single-pulse experiments on ID09B , 2002, SPIE Optics + Photonics.

[11]  Y. Martin,et al.  Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution , 1995, Science.

[12]  P. Leiderer,et al.  Optical near-fields of triangular nanostructures , 2007 .

[13]  Christian Dahmen,et al.  Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering , 2004 .

[14]  W. Kautek,et al.  Femtosecond laser ablation of silicon–modification thresholds and morphology , 2002 .

[15]  A. Plech,et al.  Cavitation dynamics on the nanoscale , 2005 .

[16]  Y. S. Touloukian Thermal Expansion: Metallic Elements and Alloys , 1975 .

[17]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[18]  J. Kimling,et al.  Turkevich method for gold nanoparticle synthesis revisited. , 2006, The journal of physical chemistry. B.

[19]  H. Misawa,et al.  Optical properties of nanoengineered gold blocks. , 2005, Optics letters.

[20]  M. Meunier,et al.  Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation , 2006 .

[21]  B. Chichkov,et al.  Nanostructuring with spatially localized femtosecond laser pulses. , 1999, Optics letters.

[22]  A. Miotello,et al.  Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature , 1999 .

[23]  G. Hartland Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism , 2002 .

[24]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[25]  Danny Perez,et al.  Ablation of solids under femtosecond laser pulses. , 2002, Physical review letters.

[26]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[27]  K. Willig,et al.  Transient electron energy distribution in supported Ag nanoparticles , 2002 .

[28]  M. Wulff,et al.  Time-resolved X-ray diffraction on laser-excited metal nanoparticles , 2003 .

[29]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[30]  Dynamics of size-selected gold nanoparticles studied by ultrafast electron nanocrystallography. , 2007, Nano letters.

[31]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[32]  D. Lynch,et al.  Thermomodulation Spectra of Al, Au, and Cu , 1972 .

[33]  Yaroslava G Yingling,et al.  Computer simulations of laser ablation of molecular substrates. , 2003, Chemical reviews.

[34]  Baptiste Gault,et al.  Estimation of the tip field enhancement on a field emitter under laser illumination , 2005 .

[35]  V Sandoghdar,et al.  Optical microscopy via spectral modifications of a nanoantenna. , 2005, Physical review letters.

[36]  Chang,et al.  Field evaporation between a gold tip and a gold surface in the scanning tunneling microscope configuration. , 1994, Physical review letters.

[37]  A. Kiesow,et al.  Formation of metal particle nanowires induced by ultrashort laser pulses , 2001 .

[38]  K. Piglmayer,et al.  Laser-induced nanopatterning of PET using a-SiO2 microspheres , 2002 .

[39]  T. Ikawa,et al.  Azobenzene polymer surface deformation due to the gradient force of the optical near field of monodispersed polystyrene spheres , 2001 .

[40]  P. Leiderer,et al.  The mechanism of nanostructuring upon nanosecond laser irradiation of a STM tip , 1998 .

[41]  Ferenc Krausz,et al.  Attosecond Nanoplasmonic Field Microscope , 2007 .

[42]  D. Bergman,et al.  Coherent control of femtosecond energy localization in nanosystems. , 2002, Physical review letters.

[43]  Gerard Mourou,et al.  Time-resolved structures of macromolecules at the ESRF: Single-pulse Laue diffraction, stroboscopic data collection and femtosecond flash photolysis , 1997 .

[44]  Johannes Boneberg,et al.  Femtosecond laser near-field ablation from gold nanoparticles , 2006 .

[45]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[46]  J. Jersch,et al.  Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip , 1996 .

[47]  L. Marrucci,et al.  Femtosecond field ion emission by surface optical rectification. , 2007, Physical review letters.

[48]  Minoru Obara,et al.  Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring , 2006 .

[49]  G. Fournet,et al.  Small‐Angle Scattering of X‐Rays , 1956 .

[50]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[51]  P. Leiderer,et al.  From Mesoscopic to Nanoscopic Surface Structures: Lithography with Colloid Monolayers , 1998 .

[52]  M. Ratner,et al.  Multipolar excitation in triangular nanoprisms. , 2005, The Journal of chemical physics.

[53]  Xuan Wang,et al.  Measurement of the electronic Grüneisen constant using femtosecond electron diffraction. , 2006, Physical review letters.

[54]  P. Leiderer,et al.  Optical field enhancement effects in laser-assisted particle removal , 2001 .

[55]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[56]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[57]  Amin Abdolvand,et al.  Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles , 2005 .

[58]  A. Hideur,et al.  Ultrafast ion emission from metallic tip excited by femtosecond laser pulses , 2006 .

[59]  G. Plessen,et al.  Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. , 2006, The Journal of chemical physics.

[60]  S. Georgiou,et al.  Laser-induced material ejection from model molecular solids and liquids: mechanisms, implications, and applications. , 2003, Chemical reviews.

[61]  Berg,et al.  Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles , 2000, Physical review letters.

[62]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[63]  Paul V. Braun,et al.  AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution , 2004 .

[64]  D. Bäuerle,et al.  Laser-induced nanopatterning of silicon with colloidal monolayers , 2007 .

[65]  Michel Meunier,et al.  Short-pulse laser ablation of solids: from phase explosion to fragmentation. , 2003, Physical review letters.

[66]  Yoshimasa Kawata,et al.  Nanofabrication induced by near-field exposure from a nanosecond laser pulse , 2001 .

[67]  Johannes Boneberg,et al.  Colloid Monolayers as Versatile Lithographic Masks , 1997 .

[68]  H Ihee,et al.  Direct imaging of transient molecular structures with ultrafast diffraction. , 2001, Science.

[69]  Salditt,et al.  Investigation of Structure and Growth of Self-Assembled Polyelectrolyte Layers by X-ray and Neutron Scattering under Grazing Angles. , 2000, Journal of colloid and interface science.

[70]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[71]  B. Luk’yanchuk,et al.  Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres , 2007 .

[72]  K. Sokolowski-Tinten,et al.  Femtosecond x-ray measurement of ultrafast melting and large acoustic transients. , 2001, Physical review letters.

[73]  Femtosecond laser-induced nanofabrication in the near field of an atomic force microscope tip , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[74]  H. Schmidt,et al.  Optically Induced Damping Of The Surface Plasmon Resonance In Gold Colloids , 1997, Quantum Electronics and Laser Science Conference.

[75]  Minoru Obara,et al.  Friction characteristics of submicrometre-structured surfaces fabricated by particle-assisted near-field enhancement with femtosecond laser , 2007 .

[76]  A. Halm,et al.  Nanomechanical Control of an Optical Antenna , 2008, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[77]  M. Koch,et al.  Laser-induced thermal expansion of a scanning tunneling microscope tip measured with an atomic force microscope cantilever , 1998 .

[78]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[79]  Thomas A. Klar,et al.  Surface-Plasmon Resonances in Single Metallic Nanoparticles , 1998 .

[80]  K. Komvopoulos,et al.  Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy , 2005 .

[81]  John E. Sader,et al.  Softening of the symmetric breathing mode in gold particles by laser-induced heating , 2003 .

[82]  Carsten Sönnichsen,et al.  Plasmon resonances in large noble-metal clusters , 2002 .

[83]  G. Seifert,et al.  Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix , 2000 .

[84]  D. Blavette,et al.  An atom probe for three-dimensional tomography , 1993, Nature.

[85]  K. Sokolowski-Tinten,et al.  Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy , 1999 .

[86]  Wolfgang Husinsky,et al.  Fast electronic and thermal processes in femtosecond laser ablation of Au , 2006 .

[87]  R. K. Harrison,et al.  Thermal analysis of gold nanorods heated with femtosecond laser pulses , 2008, Journal of physics D: Applied physics.

[88]  T. Elsaesser,et al.  Localized multiphoton emission of femtosecond electron pulses from metal nanotips. , 2007, Physical review letters.

[89]  Wei Qian,et al.  Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance. , 2006, Journal of the American Chemical Society.

[90]  Orla M. Wilson,et al.  Colloidal metal particles as probes of nanoscale thermal transport in fluids , 2002 .

[91]  C. Mirkin,et al.  Controlling anisotropic nanoparticle growth through plasmon excitation , 2003, Nature.

[92]  P. Leiderer,et al.  Nanosecond time-resolved reflectivity determination of the melting of metals upon pulsed laser annealing , 2000 .

[93]  P. Leiderer,et al.  Local field enhancement effects for nanostructuring of surfaces , 2001, Journal of microscopy.

[94]  Brent C. Stuart,et al.  Optical ablation by high-power short-pulse lasers , 1996 .

[95]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[96]  Johannes Schmitt,et al.  Preparation and Optical Properties of Colloidal Gold Monolayers , 1999 .

[97]  Patrick Audebert,et al.  Femtosecond time-resolved X-ray diffraction from laser-heated organic films , 1997, Nature.

[98]  U. Fischer,et al.  Submicroscopic pattern replication with visible light , 1981 .

[99]  Martin E. Garcia,et al.  Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of InSb. , 2008, Physical review letters.

[100]  G. Hartland,et al.  Ultrafast study of electron–phonon coupling in colloidal gold particles , 1998 .

[101]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[102]  L. Zhigilei,et al.  Limit of overheating and the threshold behavior in laser ablation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  Jason R. Dwyer,et al.  An Atomic-Level View of Melting Using Femtosecond Electron Diffraction , 2003, Science.

[104]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[105]  T. N. Hansen,et al.  Atomic-Scale Visualization of Inertial Dynamics , 2005, Science.

[106]  Johannes Boneberg,et al.  Imaging optical near-fields of nanostructures , 2004 .

[107]  T. Döppner,et al.  Controlling the coulomb explosion of silver clusters by femtosecond dual-pulse laser excitation. , 2005, Physical review letters.

[108]  J. Gilman,et al.  Nanotechnology , 2001 .

[109]  A. Zewail 4D ultrafast electron diffraction, crystallography, and microscopy. , 2006, Annual review of physical chemistry.

[110]  C. Voisin,et al.  Coherent acoustic mode oscillation and damping in silver nanoparticles , 1999 .

[111]  K. Sokolowski-Tinten,et al.  Ultrafast laser-induced order-disorder transitions in semiconductors. , 1995, Physical review. B, Condensed matter.

[112]  V. Sandoghdar,et al.  A single gold particle as a probe for apertureless scanning near‐field optical microscopy , 2001, Journal of microscopy.

[113]  H. Misawa,et al.  Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks. , 2007, Optics express.

[114]  D. Bäuerle Laser Processing and Chemistry , 1996 .

[115]  S. Fourmaux,et al.  Non-thermal melting in semiconductors measured at femtosecond resolution , 2001, Nature.

[116]  D. Young,et al.  Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics , 2004 .

[117]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[118]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[119]  Klaus Sokolowski-Tinten,et al.  The physical mechanisms of short-pulse laser ablation , 2000 .

[120]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[121]  T. Döppner,et al.  Plasmon-enhanced electron acceleration in intense laser metal-cluster interactions. , 2007, Physical review letters.

[122]  N. Arnold,et al.  Three-dimensional effects in dry laser cleaning , 2003 .

[123]  G. Seifert,et al.  Production of “dichroitic” diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses , 2001 .

[124]  Minoru Obara,et al.  Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser , 2007 .

[125]  G. Seifert,et al.  Ultrashort laser pulse induced deformation of silver nanoparticles in glass , 1999 .