The conformal theory of Alexandrov embedded constant mean curvature surfaces in $R^3$
暂无分享,去创建一个
[1] F. Pacard,et al. Bifurcating nodoids , 2002, math/0207224.
[2] J. Sullivan,et al. TRIUNDULOIDS: EMBEDDED CONSTANT MEAN CURVATURE SURFACES WITH THREE ENDS AND GENUS ZERO , 2001, math/0102183.
[3] F. Pacard,et al. Existence result for minimal hypersurfaces¶with a prescribed finite number of planar ends , 2000 .
[4] D. Pollack,et al. Connected sums of constant mean curvature surfaces in Euclidean 3 space , 1999, math/9905077.
[5] F. Pacard,et al. Constant mean curvature surfaces with Delaunay ends , 1998, math/9807039.
[6] D. Pollack,et al. The moduli space of complete embedded constant mean curvature surfaces , 1994, dg-ga/9408004.
[7] Karen K. Uhlenbeck,et al. Moduli Spaces of Singular Yamabe Metrics , 1994, dg-ga/9406004.
[8] W. Meeks. The topology and geometry of embedded surfaces of constant mean curvature , 1987 .
[9] J. Birman. Braids, Links, and Mapping Class Groups. , 1975 .
[10] R. Ratzkin. An end-to-end gluing construction for surfaces of constant mean curvature , 2001 .
[11] Bruce Solomon,et al. The structure of complete embedded surfaces with constant mean curvature , 1989 .