Mineralogical mapping of Coniraya quadrangle of the dwarf planet Ceres
暂无分享,去创建一个
F. G. Carrozzo | E. Palomba | A. Longobardo | A. Frigeri | C. Pieters | F. Zambon | A. Raponi | M. Ciarniello | J. Combe | C. Russell | E. Ammannito | M. C. Sanctis | M. D. De Sanctis | F. Tosi | C. Raymond | C. Russell | A. Frigeri | C. Raymond
[1] F. G. Carrozzo,et al. Nature, formation, and distribution of carbonates on Ceres , 2018, Science Advances.
[2] Katherine E. Johnson,et al. Exposed H2O-rich areas detected on Ceres with the dawn visible and infrared mapping spectrometer , 2017, Icarus.
[3] R. Jaumann,et al. The formation and evolution of bright spots on Ceres , 2017, Icarus.
[4] A. Longobardo,et al. Mineralogy of the Occator quadrangle , 2017, Icarus.
[5] F. G. Carrozzo,et al. Mineralogical mapping of the Kerwan quadrangle on Ceres , 2017, Icarus.
[6] F. G. Carrozzo,et al. Spectral investigation of quadrangle AC-H 3 of the dwarf planet Ceres – The region of impact crater Dantu , 2017, Icarus.
[7] F. G. Carrozzo,et al. Localized aliphatic organic material on the surface of Ceres , 2017, Science.
[8] F. G. Carrozzo,et al. Artifacts reduction in VIR/Dawn data. , 2016, The Review of scientific instruments.
[9] S. Erard,et al. The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis , 2016, 1612.02231.
[10] Christopher T. Russell,et al. High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images , 2016 .
[11] F. G. Carrozzo,et al. Distribution of phyllosilicates on the surface of Ceres , 2016, Science.
[12] F. G. Carrozzo,et al. Detection of local H2O exposed at the surface of Ceres , 2016, Science.
[13] F. G. Carrozzo,et al. Spectrophotometric properties of dwarf planet Ceres from VIR onboard Dawn mission , 2016, 1608.04643.
[14] R. Mugnuolo,et al. Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres , 2016, Nature.
[15] C. Russell,et al. Geologic Mapping of the Ac-H-2 Coniraya Quadrangle of Ceres from NASA’s Dawn Mission. , 2016 .
[16] R. Jaumann,et al. Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres , 2015, Nature.
[17] M. Sgavetti,et al. Spectral variability of plagioclase-mafic mixtures (2): Investigation of the optical constant and retrieved mineral abundance dependence on particle size distribution , 2014 .
[18] Emmanuel Dartois,et al. Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites , 2013 .
[19] R. H. Brown,et al. Saturn’s icy satellites and rings investigated by Cassini–VIMS: III – Radial compositional variability , 2012, 1203.6230.
[20] John S. Hendricks,et al. Dawn’s Gamma Ray and Neutron Detector , 2011 .
[21] A. Bini,et al. The VIR Spectrometer , 2011 .
[22] Christopher T. Russell,et al. The Dawn Mission to Vesta and Ceres , 2011 .
[23] R. Clark,et al. Hapke modeling of Rhea surface properties through Cassini-VIMS spectra , 2011 .
[24] David E. Smith,et al. The Dawn Gravity Investigation at Vesta and Ceres , 2011 .
[25] T. Maue,et al. The Dawn Framing Camera , 2011 .
[26] H. Rickman,et al. Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR Deep Impact spectra , 2009 .
[27] Angioletta Coradini,et al. Dawn Mission to Vesta and Ceres , 2007 .
[28] J. Salisbury,et al. Comparisons of meteorite and asteroid spectral reflectivities , 1973 .
[29] Muang T’ai. Siam , 1946, Revue Internationale de la Croix-Rouge et Bulletin international des Societes de la Croix-Rouge.
[30] C. Russell,et al. Mineralogical mapping of the Occator Quadrangle , 2016 .
[31] Gianrico Filacchione,et al. Calibrazioni a terra e prestazioni in volo di spettrometri ad immagine nel visibile e nel vicino infrarosso per l'esplorazione planetaria , 2007 .