Mineralogical mapping of Coniraya quadrangle of the dwarf planet Ceres

[1]  F. G. Carrozzo,et al.  Nature, formation, and distribution of carbonates on Ceres , 2018, Science Advances.

[2]  Katherine E. Johnson,et al.  Exposed H2O-rich areas detected on Ceres with the dawn visible and infrared mapping spectrometer , 2017, Icarus.

[3]  R. Jaumann,et al.  The formation and evolution of bright spots on Ceres , 2017, Icarus.

[4]  A. Longobardo,et al.  Mineralogy of the Occator quadrangle , 2017, Icarus.

[5]  F. G. Carrozzo,et al.  Mineralogical mapping of the Kerwan quadrangle on Ceres , 2017, Icarus.

[6]  F. G. Carrozzo,et al.  Spectral investigation of quadrangle AC-H 3 of the dwarf planet Ceres – The region of impact crater Dantu , 2017, Icarus.

[7]  F. G. Carrozzo,et al.  Localized aliphatic organic material on the surface of Ceres , 2017, Science.

[8]  F. G. Carrozzo,et al.  Artifacts reduction in VIR/Dawn data. , 2016, The Review of scientific instruments.

[9]  S. Erard,et al.  The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis , 2016, 1612.02231.

[10]  Christopher T. Russell,et al.  High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images , 2016 .

[11]  F. G. Carrozzo,et al.  Distribution of phyllosilicates on the surface of Ceres , 2016, Science.

[12]  F. G. Carrozzo,et al.  Detection of local H2O exposed at the surface of Ceres , 2016, Science.

[13]  F. G. Carrozzo,et al.  Spectrophotometric properties of dwarf planet Ceres from VIR onboard Dawn mission , 2016, 1608.04643.

[14]  R. Mugnuolo,et al.  Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres , 2016, Nature.

[15]  C. Russell,et al.  Geologic Mapping of the Ac-H-2 Coniraya Quadrangle of Ceres from NASA’s Dawn Mission. , 2016 .

[16]  R. Jaumann,et al.  Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres , 2015, Nature.

[17]  M. Sgavetti,et al.  Spectral variability of plagioclase-mafic mixtures (2): Investigation of the optical constant and retrieved mineral abundance dependence on particle size distribution , 2014 .

[18]  Emmanuel Dartois,et al.  Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites , 2013 .

[19]  R. H. Brown,et al.  Saturn’s icy satellites and rings investigated by Cassini–VIMS: III – Radial compositional variability , 2012, 1203.6230.

[20]  John S. Hendricks,et al.  Dawn’s Gamma Ray and Neutron Detector , 2011 .

[21]  A. Bini,et al.  The VIR Spectrometer , 2011 .

[22]  Christopher T. Russell,et al.  The Dawn Mission to Vesta and Ceres , 2011 .

[23]  R. Clark,et al.  Hapke modeling of Rhea surface properties through Cassini-VIMS spectra , 2011 .

[24]  David E. Smith,et al.  The Dawn Gravity Investigation at Vesta and Ceres , 2011 .

[25]  T. Maue,et al.  The Dawn Framing Camera , 2011 .

[26]  H. Rickman,et al.  Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR Deep Impact spectra , 2009 .

[27]  Angioletta Coradini,et al.  Dawn Mission to Vesta and Ceres , 2007 .

[28]  J. Salisbury,et al.  Comparisons of meteorite and asteroid spectral reflectivities , 1973 .

[29]  Muang T’ai Siam , 1946, Revue Internationale de la Croix-Rouge et Bulletin international des Societes de la Croix-Rouge.

[30]  C. Russell,et al.  Mineralogical mapping of the Occator Quadrangle , 2016 .

[31]  Gianrico Filacchione,et al.  Calibrazioni a terra e prestazioni in volo di spettrometri ad immagine nel visibile e nel vicino infrarosso per l'esplorazione planetaria , 2007 .