Shock waves, dead zones and particle-free regions in rapid granular free-surface flows

Shock waves, dead zones and particle-free regions form when a thin surface avalanche of granular material flows around an obstacle or over a change in the bed topography. Understanding and modelling these flows is of considerable practical interest for industrial processes, as well as for the design of defences to protect buildings, structures and people from snow avalanches, debris flows and rockfalls. These flow phenomena also yield useful constitutive information that can be used to improve existing avalanche models. In this paper a simple hydraulic theory, first suggested in the Russian literature, is generalized to model quasi-two-dimensional flows around obstacles. Exact and numerical solutions are then compared with laboratory experiments. These indicate that the theory is adequate to quantitatively describe the formation of normal shocks, oblique shocks, dead zones and granular vacua. Such features are generated by the flow around a pyramidal obstacle, which is typical of some of the defensive structures in use today.

[1]  K. Hutter,et al.  Physik granularer Lawinen , 1998 .

[2]  S. Savage,et al.  Gravity flow of cohesionless granular materials in chutes and channels , 1979, Journal of Fluid Mechanics.

[3]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[4]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[5]  Kolumban Hutter,et al.  Motion of a granular avalanche in a convex and concave curved chute: experiments and theoretical predictions , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[6]  P. Arminjon,et al.  Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace , 1995 .

[7]  Hilbert,et al.  Methods of Mathematical Physics, vol. II. Partial Differential Equations , 1963 .

[8]  Tómas Jóhannesson,et al.  Run-up of two avalanches on the deflecting dams at Flateyri, northwestern Iceland , 2001, Annals of Glaciology.

[9]  Paul Arminjon,et al.  Convergence of a Finite Volume Extension of the Nessyahu--Tadmor Scheme on Unstructured Grids for a Two-Dimensional Linear Hyperbolic Equation , 1999 .

[10]  G. Tadmor,et al.  Non-oscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1997 .

[11]  R. LeVeque Numerical methods for conservation laws , 1990 .

[12]  Olivier Pouliquen,et al.  SCALING LAWS IN GRANULAR FLOWS DOWN ROUGH INCLINED PLANES , 1999 .

[13]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis , 1991 .

[14]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[15]  J M Ottino,et al.  Segregation-driven organization in chaotic granular flows. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[17]  K. Hutter,et al.  Unconfined flow of granular avalanches along a partly curved surface. I. Theory , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  Knut-Andreas Lie,et al.  An Improved Quadrature Rule for the Flux-Computation in Staggered Central Difference Schemes in Multidimensions , 2003, J. Sci. Comput..

[19]  Ugur Tüzün,et al.  Stratification in poured granular heaps , 1998, Nature.

[20]  J. Gray,et al.  Granular flow in partially filled slowly rotating drums , 2001, Journal of Fluid Mechanics.

[21]  Kolumban Hutter,et al.  Shock-capturing and front-tracking methods for granular avalanches , 2015, 1501.04756.

[22]  Kolumban Hutter,et al.  Unconfined flow of granular avalanches along a partly curved surface. II. Experiments and numerical computations , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[23]  S. N. Dorogovtsev Avalanche mixing of granular solids , 1998 .

[24]  Edward E. Adams,et al.  Density, velocity and friction measurements in a dry-snow avalanche , 1998 .

[25]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[26]  Kolumban Hutter,et al.  Pattern formation in granular avalanches , 1997 .

[27]  O. Hungr,et al.  The Avalanche Lake rock avalanche, Mackenzie Mountains, Northwest Territories, Canada: description, dating, and dynamics , 1994 .

[28]  Troy Shinbrot,et al.  Spontaneous chaotic granular mixing , 1999, Nature.

[29]  Shlomo Havlin,et al.  Spontaneous stratification in granular mixtures , 1997, Nature.

[30]  Julio M. Ottino,et al.  Mixing of granular materials in slowly rotated containers , 1996 .

[31]  G. Whitham Linear and non linear waves , 1974 .

[32]  T. Shinbrot,et al.  Nonequilibrium Patterns in Granular Mixing and Segregation , 2000 .

[33]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[34]  Subhash C. Jain,et al.  Open-Channel Flow , 2000 .

[35]  Oldrich Hungr,et al.  A model for the runout analysis of rapid flow slides, debris flows, and avalanches , 1995 .

[36]  A. Kulikovskii,et al.  Two-dimensional problem of the motion of a snow avalanche along a slope with smoothly changing properties: PMM vol. 37, n≗5, 1973, pp. 837–848 , 1973 .

[37]  Kolumban Hutter,et al.  Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature , 1999, Journal of Fluid Mechanics.

[38]  On the inclusion of a velocity-dependent basal drag in avalanche models , 1998 .

[39]  Olivier Pouliquen,et al.  Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane , 2001, Journal of Fluid Mechanics.

[40]  Berend Smit,et al.  Commensurate ‘freezing’ of alkanes in the channels of a zeolite , 1995 .

[41]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[42]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[43]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments , 1995 .

[44]  A. Spencer Continuum Mechanics , 1967, Nature.

[45]  P. Chadwick Continuum Mechanics: Concise Theory and Problems , 1976 .

[46]  S. B. Savage,et al.  Two-dimensional spreading of a granular avalanche down an inclined plane Part I. theory , 1993 .